• Title/Summary/Keyword: 폴리머-시멘트비

Search Result 124, Processing Time 0.026 seconds

Weatherability of Epoxy Cement Mortars without Hardener (경화제를 첨가하지 않은 에폭시 시멘트 모르타르의 내후성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.801-809
    • /
    • 2006
  • Epoxy resin has widely been used as adhesives and corrosion-resistant paints in the construction industry for many years, since it has desirable properties such as high adhesion and chemical resistance. Until now, in the production of conventional epoxy cement mortars, the use of any hardener has been considered indispensable for the hardening of the epoxy resin. However we have noticed the fact that even without any hardener, the hardening process of the epoxy resin can proceed by the action of hydroxides in cement mortars. As a result the disadvantages of the two-component mixing of the epoxy resin and hardener have been overcome. The purpose of this study is to evaluate the mechanical properties and durability of epoxy cement mortar without a hardener exposed at indoor and outdoor for one year. The epoxy cement mortars without and with a hardener were prepared with various polymer-cement ratios, and tested for weight change, flexural and compressive strengths, water absorption, carbonation depth and pore size distribution. Especially, the basic properties of the epoxy cement mortars without hardener are discussed in comparison with ones with the hardener. From the test results, it is concluded thai the epoxy cement mortars without a hardener exposed at indoor and outdoor for one year have higher strength and better durability than ones with the hardener within the polymer-cement ratios of 10 to 20%.

A Study on the Viscosity and Compaction of Polymer-Cement Composites According to Types of Polymer for Crack Repair (균열보수용 폴리머 시멘트 복합체의 폴리머 종류에 따른 점도와 충전성에 관한 연구)

  • Park, Dong-Yeop;Kwon, Woo-Chan;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.161-162
    • /
    • 2022
  • The purpose of this study is to determine the viscosity of the polymer-cement composites(PCCs) for crack repair of RC structures and to investigate its compaction. According to the study on the viscosity and compaction property of PCCs for crack repair, the viscosity of PCCs varies greatly depending on the polymer type and polymer cement ratio, and by mixing silica fume into PCCs, appropriate viscosity and excellent flow can be controlled without separation of cement and water. As a result of this study, basic data on the viscosity, fluidity, and compaction properties of PCCs for crack repair of RC structure can be obtained.

  • PDF

The Effects of Curing Age and Thickness of Coating Material on the Bond Strength of PCS-Coated Rebar to Cement Concrete (도장재의 양생재령과 도장두께가 PCS 도장철근과 시멘트 콘크리트와의 부착강도에 미치는 영향)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.331-339
    • /
    • 2017
  • The purpose of this study is to evaluate the effect of curing age and thickness of coating material on the bond strength of polymer cement slurry(PCS)-coated rebar that can replace epoxy-coated rebar. The test specimens were prepared with two types of cement, two types of polymer dispersion as St/BA and EVA, two polymer-cement ratios, two coating thicknesses and three curing ages, and tested for bond strength test to cement concrete. The flexural behavior of RC beam that is made by optimum conditions such as polymer-cement ratio of 80%, coating thickness of $100{\mu}m$ and curing age of 7 days of PCS recommended from the bond strength test is also conducted. From the test results, The maximum bond strength of PCS-coated rebar at curing age of 7-day and coating thickness of $100{\mu}m$ was about 1.52 and 1.58 times respectively, the strength of plain and epoxy-coated rebar. The ultimate loads of RC beam using PCS-coated rebar were range of 81.1% to 102.3% of that of plain rebar, and 98.4% to 124.1% of that of epoxy-coated rebar. It is apparent that PCS-coated rebar with EVA, curing age at 7-day and $100{\mu}m$ can replace epoxy-coated rebar in construction field.

Strength and Durability of Polymer-Modified Mortars Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 혼입한 폴리머 시멘트 모르타르의 강도 및 내구성)

  • 주명기;김남길;연규석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 2002
  • Effect of the polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag are examined. Results shows that the flexural and compressive strengths of polymer-modified mortar using the slag tend to increase with increasing slag content, and reaches a maximum at a slag content of 40 %, and is inclined to increase with increasing polymer-binder ratio. Water absorption, carbonation depth and chloride ion penetration depth tend to decrease with increasing polymer-binder ratio and slag content. Accordingly, the incorporation of slag into polymer-modified mortars at a slag content of 40% is recommended for a combined wet/dry curing regardless of the types of polymer.

Strength Development and Durability of Geopolymer Mortar Using the Combined Fly ash and Blast-Furnace Slag (플라이애시와 고로슬래그 미분말을 혼합 사용한 지오폴리머 모르타르의 강도발현 및 내구성)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the strength development and durability of geopolymer mortar using blast furnace slag only, and admixed with blast-furnace slag and fly ash as cementious materials in oder to develop cementless geopolymer concrete. In order to compare with the geopolymer mortar, the normal mortar using ordinary portland cement was also test. In view of the results, we found out that strength development, the resistance to freezing-thawing of the geopolymer mortar have better than the mortar using ordinary portland cement. Especially, using the combined with blast furnace slag and fly ash develop high strength of above 60 MPa, and improve the resistance of freezing-thawing of approximately 20%, but promote the velocity of carbonation of 2.2~3.5 times.

Characteristics of EVA-Polymer Modified Mortars Recycling Rapid-chilled Steel Slag Fine Aggregate (급냉 제강슬래그를 재활용한 EVA-폴리머 시멘트 모르타르의 특성)

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.652-660
    • /
    • 2008
  • For the recycling of rapid-chilled steel slag, the mechanical strengths and physical properties of EVA-polymer modified mortars with the various replacement ratios of rapid-chilled steel slag were investigated. Twenty five specimens of polymer modified mortars were prepared with the five different amounts of EVA-polymer modifier (0, 5, 10, 15, 20 wt%) and rapid-chilled steel slag (0, 25, 50, 75, 100 wt%). For the investigation of the characteristics of polymer modified mortars, the measurements such as water-cement ratio, unit volume weight, air content for fresh mortar and compressive strength, flexural strength, water absorption, hot water resistance, porosity and SEM investigation for curing specimens were conducted. As a results, with an increase in the replacement ratio of rapid-chilled steel slag, water-cement ratios decreased but unit volume weight increased remarkably. With increasing EVA-polymer modifier and the replacement ratio of rapid-chilled steel slag, percent of water absorption decreased but compressive and flexural strengths increased remarkably. By the hot water resistance test, mechanical strengths decreased but total pore volume and porosity increased remarkably. In the SEM observation, the components of specimen were shown to stick to each other in the form of co-matrix phase before hot water resistance test, but polymer modifier of co-matrix phase was decomposed or deteriorated after hot water resistance test.

Performance Evaluation of Cement Mixed Polymer Type Waterproofing Material (시멘트 혼입폴리머계 방수재의 성능 평가)

  • Oh, Dong-Sik;Go, Seong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This study aims to propose a performance metric for the application of a horizontal air-exhausting system to be used for the reduction of vapor and/or moisture that exists in the waterproof layer, by evaluating the physical properties. For this reason, tests in accordance with current standards were carried out, and the results were examined. Finally, a proposal was established for a general performance metric that could be applied as fundamental data based on the user's judgment. This has some limitations, in that the object is existing merchandise, however it should be useful for application in the construction field. In the future, analysis of a wider area, including workability, should be added in the phase of field application.

Adhesion in Tension of Polymer-Modified Mortars according to Curing Conditions (양생조건에 따른 폴리머 시멘트 모르타르의 인장접착강도)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.200-201
    • /
    • 2018
  • The purpose of this study is to evaluate the adhesion in tension of polymer-modified mortars according to curing conditions. From the test results, the adhesion in tension is seriously affected by type of curing conditions compared with type of polymer dispersions or polymer-cement ratios. The maximum adhesion in tension of EVA-modified mortar with polymer-cement ratio of 20% cured by standard condition is about 1.81 times, the cement mortar cured in water. It is apparent that the adhesion in tension of polymer-modified mortars according to raising of polymer-cement ratio is also much more improved irrespective of type of polymer dispersions and curing conditions.

  • PDF

Basic Mix Proportions of Antiwashout Underwater Polymer Cement Mortar as a Repair Material (보수재료로서 수중불분리 폴리머 시멘트 모르타르의 기초적 배합)

  • Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.193-194
    • /
    • 2019
  • The purpose of this study is to design the basic mix proportions of antiwashout underwater polymer cement mortar as a repair material. The antiwashout underwater polymer cement mortars are prepared with various mix proportions using three type polymer dispersions without or with antifoamer. From the test results, the whole antiwashout underwater polymer cement mortars can be cast underwater without segregation like plain mortar. It is apparent that the flexural strength of antiwashout underwater SBR cement mortars with antifoamer at polymer- cement ratios of 5% and 10% is higher than that of plain mortar irregardless of a little low compressive strength.

  • PDF

A Study on the Viscosity and Flowability of Polymer-Cement Composites for Repairing Cracks of RC Structures (RC 구조물의 균열 보수용 폴리머 시멘트 복합체의 점도와 유동성에 관한 연구)

  • Hong, Dae-Won;Kim, Sang-Hyuk;Kwon, Woo-Chan;Jo, Young-Kug
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.166-167
    • /
    • 2021
  • The purpose of this study is to evaluate the viscosity and flowability of polymer-cement composites for repairing cracks of RC structures. The viscosity and flowability of the polymer cement composites differed greatly depending on the type of polymer and the polymer cement ratio, and the polymer cement composites could be produced that could repair fine cracks in the RC structure without material separation by adjusting the proper water-cement ratio. In particular, the mixing of high viscosity EVA-modified polymer composites could be adjusted.

  • PDF