• Title/Summary/Keyword: 폴리머-시멘트비

Search Result 124, Processing Time 0.031 seconds

An Evaluation of the Structural Integrity of the Polymer-Modified Cement Waste Form (폴리머 시멘트 고화체에 대한 구조적 건전성 평가)

  • Ji, Young-Yong;Kwak, Kyung-Kil;Hong, Dae-Seok;Kim, Tae-Kuk;Ryu, Woo-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2011
  • Polymer-modified cement is the composite material made by partially replacing and strengthening the cement hydrate binders of conventional mortar with polymeric modifiers such as polymer latexes and redispersible polymeric modifiers. It is known that the addition of polymer to cement mortar leads to improved quality, which would be expected to have a high chemical resistance. Therefore, the purpose of this study is to identify the improved chemical resistance, such as low permeability and low ion diffusivity, of the polymer-modified cement as a solidification agent for the radwaste. First, polymer-modified cement specimens by latex modification were prepared according to the polymer content from 0% to 30% to select the optimized polymer content. At those specimens, the water-to-cement (W/C) ratio was maintained to 33% and 50% respectively. After the much curing time, the structural integrity of specimens was evaluated through the compressive strength test and the porosity evaluation by the water immersion method. From the results, 10% of the polymer content at 33% of the W/C ratio was shown to have the most improved quality. Finally, the leaching test referredfrom ANS 16.1 for the specimens having the most improved quality was conducted. Dedicated specimens for the leaching test were then mixed with radioisotopes of $^{60}Co$ and $^{137}Cs$ at the specimen preparation.

Strength Properties of Ultrarapid-Hardening polymer-Modified Concrete with Fiber (섬유 혼입 초속경 폴리머 시멘트 콘크리트의 강도 특성)

  • Joo, Myung-Ki;Noh, Byung-Chul;Kim, Young-Sang;Choi, Kyu-Hyung;Choi, Yong-Son
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.749-752
    • /
    • 2008
  • The effects of fiber content on strength properties of ultrarapid-hardening polymer-modified concretes with fiber. As a result, the compressive and flexural strengths of ultrarapid-hardening polymer-modified concretes with fiber increase with increasing of fiber content. In particular, the ultrarapid-hardening polymer-modified concretes with a polymer-cement ratio of 20% and a fiber content of 0.08% provide approximately two times higher flexural strength than unmodified concretes. Such high strength development is attributed to the high tensile strength of polymer and fiber and the improved bond between cement hydrates and aggregates because of the addition of polymer and fiber.

  • PDF

A Study on the Adhesion Properties of Polymer-Cement Composites for Repairing Cracks in RC Structures (RC 구조물의 균열 보수용 폴리머 시멘트 복합체의 접착특성에 관한 연구)

  • Jo, Young-Kug;Hong, Dae-Won;Kwon, Woo-Chan;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • The purpose of this study is to evaluate the adhesion properties of polymer cement composites for crack repair of an RC structure. Polymer cement composites are manufactured from cement, three types of polymers and silica fume, and the mixture is designed by adjusting the water cement ratio and AE reducing agent so that the viscosity target of the polymer cement composites is 700mPa·s or less. According to the test results, the Type-A adhesion in tension of the polymer cement composite exceeded the adhesion standard of 1.0MPa of the polymer finishing material, and furthermore, depending on the type of polymer, the adhesion in tension was highest for SAE, followed in descending order by EVA, and SBR. In addition, the adhesion in tension of Type-B is up to 1/4.5 lower than that of Type-A, but the incorporation of silica fume shows a significant improvement in terms of adhesion in tension. Based on this study, the basic mixing design of the polymer cement composites required for viscosity and adhesive performance required for crack repair of the RC structure was completed. It could be proposed as an optimal mixing design under conditions for intermixing polymer type EVA, SAE, and P/C 80%-100%.

Effect of Addition of Ground Granulated Blast-furnace Slag on Strength Properties of Autoclaved Polymer-Modified Concrete (오토클레이브 양생 폴리머 시멘트 콘크리트의 강도성상에 미치는 고로슬래그 미분말 혼입의 영향)

  • 주명기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.608-614
    • /
    • 2002
  • The effects of slag content and polymer-binder ratio on the strength properties of autoclaved SBR-modified concretes using ground granulated blast-furnace slag(slag) and a styrene-butadiene rubber (SBR) latex are examined. As a result, the compressive and tensile strengths of the autoclaved SBR-modified concretes using slag increase with increasing slag content, and reach a maximum at a slag content 40%, and increase with increasing polymer-binder ratio. In particular, the autoclaved SBR-modified concretes with a slag content of 40% provide about three times higher tensile strength than unmodified concretes. Such high strength development is attributed to the high tensile strength of SBR polymer and the improved bond between cement hydrates and aggregates because of the addition of SBR latex.

Effects of Admixtures in Properties of Polymer Cement Mortar for Concrete Repair (혼화재료가 보수용 폴리머 시멘트 모르타르의 성질에 미치는 영향)

  • Song, Hyung-Soo;Lee, Chin-Yong;Min, Chang-Shik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • The EVA polymer is used as a modifier in the repair mortar, which contains various admixtures and mineral admixtures. It has been reported that the effect of polymer in cement mortar by the cement-polymer ratio only, but effect of admixtures over the polymer mortar was unknown. In this study, the fresh and mechanical properties of polymer cement mortar influenced by the range of admixtures(CSA expansive addictive, CSA accelerator, gypsum, silica fume) ratio were investigated.

Properties of Polymer-Modified Mortar with Styrene-Butyl Acrylate and Styrene Butadiene Rubber (S/BA와 SBR을 혼입한 폴리머 시멘트 모르타르의 특성)

  • Mun, Kyung-Ju;Song, Hae-Ryong;Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • Polymer-modified mortars have been largely used as paving materials, flooring, waterproofing material, adhesives, anticorrosive linings, deck coverings, and other various materials. The various types and properties of the mixed polymer largely affect the characteristics of polymer-modified mortar that has been mixed with polymer latexes. Consequently, its application purposes are varied according to these properties. This paper investigates the typical properties of polymer-modified mortars that contain styrene and butyl acrylate latexes and styrene butadiene rubber. They are then tested to obtain air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the superior flexural strength of polymer-modified mortars is obtained at a S/BA-2 and a polymer-cement ratio of 20%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the types of polymer. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete.

Exploring the Flexural Bond Strength of Polymer-Cement Composition in Crack Repair Applications (균열 보수용 폴리머 시멘트 복합체의 휨접착강도에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • This research aims to assess the flexural bonding efficacy of polymer-cement composites(PCCs) in mending cracks within reinforced concrete(RC) structures. The study involved infilling PCCs into cement mortar cracks of varying dimensions, followed by evaluations of enhancements in flexural adhesion and strength. The findings indicate that the flexural bond performance of PCCs in crack repair is influenced by the cement type, polymer dispersion, and the polymer-to-binder ratio. Specifically, the use of ultra-high early strength cement combined with silica fume resulted in an up to 19.0% improvement in flexural bond strength compared to the application of ordinary Portland cement with silica fume. It was observed that the augmentation in flexural strength of cement mortar filled with PCCs was significantly more dependent on the depth of the crack rather than the width. Furthermore, PCCs not only acted as repair agents but also as reinforcement materials, enhancing the flexural strength to a certain extent. Consequently, this study concludes that PCCs formulated with ultra-high early strength cement, various polymer dispersions, silica fume, and a high polymer-to-binder ratio ranging from 60% to 80% are highly effective as maintenance materials for crack filling in practical settings.

Evaluations of Corrosion Resistance of Coated Steel Using Polymer Cement Slurry (폴리머 시멘트 슬러리로 코팅한 도장철근의 내식성 평가)

  • Jo, Young-Kug;Kim, Young-Jib;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2003
  • Reinforced concrete structures under sever conditions such as marine structures, bridges and structures constructed with aggregates(dredged from sea), can be deteriorated from corrosion of the reinforcing bars. The purpose of this study is to evaluate the anti-corrosive performance of coated steel using polymer cement slurry. Polymer cement slurry with various polymer dispersions and corrosion inhibiting agent were coated to the surface of bars, and tested for accelerated corrosion tests. Tests include immersion in NaCl 10% solution, chloride ion spray, autoclave cure, autoclave cure after carbonation, penetration of NaCl 10 % solution, carbonation after penetration of NaCl 10% solution. Test results, show that the anti-corrosive performace is considerably improved by using polymer cement slurry at surface of steel. And this trend is marked by adding of corrosion inhibiting agent. This difference of the anti-corrosive properties is hardly recognized according to types of polymer dispersions. The coated steel using polymer cement slurry will be improved to a great extent compared to those of plain steel when increasing content of chloride ion in cement concrete.

Tensile Strength and Tensile Adhesive Strengths of Polymer-Modified Mortar with Methyl Methacrylate-Based Latexes (MMA계 라텍스를 혼입한 폴리머 시멘트 모르타르의 인장강도 및 부착강도)

  • Hyung, Won-Gil;Lee, Chan-Tae;Park, Sung-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.247-252
    • /
    • 2010
  • This paper investigates the effects of the monomer ratios on the typical properties of polymer-modified mortars that contain methyl methacrylate-based latexes. Basic data are also obtained to develop appropriate latexes for cement modifiers. Polymer-modified mortars that contain methyl methacrylate latexes copolymerized with butyl acrylate or ethyl acrylate are prepared for different polymer-cement ratios. They are then tested to obtain the tensile and tensile adhesive strengthes of polymer-modified mortar with methyl methacrylate-based latexes. From the test results, the tensile strength of MB7 polymer-modified mortar was higher than normal cement mortar by a maximum of 94% with a 20% polymer-cement ratio, which was almost twice higher than normal. The tensile adhesive strength of the MB polymer-modified mortar was higher for higher MMA monomer contents and polymer-cement ratios, and increased up to four times than that of normal cement mortar. The basic properties of the polymer-modified mortars are more affected by the polymer-cement ratio than by the monomer ratio, and are improved over unmodified mortar.

Physical Properties of Polymer Composite Recycling Recycled Aggregate (순환골재를 재활용한 폴리머 복합재료의 물성)

  • Hwang, Eui-Hwan;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • Nowadays, recycling of recycled aggregates from the waste concrete is seriously demanded for the protection of environment and the shortage of aggregates owing to the large scale construction project. In this study, for the development of polymer composite recycling recycled aggregates from the waste concrete, twenty five specimens of the polymer composite were prepared with the five levels of replacement ratios of recycled aggregates (0, 25, 50, 75, 100%) and polymer-cement ratios (0,5, 10, 15, 20%), respectively. For the evaluation of the performance of polymer composite specimens, various physical properties such as compressive and flexural strengths, water absorption, hot water resistance, total pore volume and porosity were investigated. As a result, physical properties of polymer composite were remarkably improved with an increase of polymer cement ratios, but greatly decreased with the replacement ratios of recycled aggregates.