• Title/Summary/Keyword: 폴리머 첨가제

Search Result 245, Processing Time 0.023 seconds

Effect of Fillers on Dispersion of Carbon Nanotubes in a Twin-Screw Extruder (이축압출기에서 카본나노튜브의 분산에 대한 충전제 효과)

  • Hong, Seung Soo;Shin, Ji Hee;Song, Kwon Bin;Lee, Kwang Hee
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.342-346
    • /
    • 2013
  • In this study, it was attempted to disperse carbon nanotubes (CNTs) in a polymer matrix using a twin-screw extruder which was good for dispersing fillers of micron sizes but not suitable for dispersing nanometer-sized materials. Improved dispersion of CNTs could be achieved by the addition of inorganic fillers with different geometrical shapes. An increase in the matrix viscosity provided a high shear stress on aggregated CNTs, leading to a good dispersion of CNTs. The presence of the inorganic fillers was supposed to suppress the re-aggregation of CNTs in the regions where a lower shear stress was applied. As a result, the CNTs dispersion was well stabilized.

Study on the immersion test of geopolymers made by recycling of coal ash (석탄회를 재활용한 지오폴리머 침지실험에 관한 연구)

  • Bang, John J.;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.199-205
    • /
    • 2018
  • A geopolymer was produced from coal ash generated from an integrated gasification combined cycle (IGCC) plant and its water resistance was evaluated. For this purpose, the geopolymer specimens were immersed in water for 30 days to measure changes in microstructure and alkalinity of the immersion liquid. Particularly, the experiment was carried out with foaming status of the geopolymers and parameters of room temperature aging condition, and immersion time. The foamed geopolymer containing 0.1 wt% Si-sludge had pores with a diameter of 1 to 3 mm and exhibited excellent foamability. Also, the calcium-silicate-hydrate crystal phase appeared in the foamed geopolymer. In the geopolymer immersion experiment, the pH of the immersion liquid increased with time, because the un-reacted alkali activator remained was dissolved in the immersion liquid. From the pH change of the immersion liquid, it was found that geopolymer reaction in the foamed specimen was completed faster than the non-foamed specimen. Through this study, it was possible to successfully produce foamed and non-foamed geopolymers recycled from IGCC coal ash. Also the necessary data for the safe application of IGCC coal ash-based geopolymers to areas where water resistance is needed were established; for example, the process conditions for room temperature aging time, effect of foaming status, immersion time and so on.

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.

Study on the Thermal Properties and Adhesion Strength of Amorphous Polyalphaolefins/Petroleum Resin Blonds as a Hot Melt Adhesive (핫 멜트 접착제로 사용되는 비 결정성 올레핀 수지/석유수지 블렌드의 열적 성질 및 접착성에 관한 연구)

  • 홍인오;김환기;강호종
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.513-519
    • /
    • 2000
  • The effect of petroleum resin as a tackifier for polyalphaolefin (APAO) hot melt adhesive on thermal properties, crystallinity and adhesion strength was investigated. The presence of petroleum resin resulted in the melting temperature decrease in APAO/petroleum blend, especially, in APAO with low ethylene content/C$_{5}$ petroleum blend. It was also found that petroleum resin caused the decrease of crystallinity regardless of ethylene content in APAO. The maximum adhesion strength was found to be at 50/50 (APAO/petroleum) composition. $C_{5}$ resin was more effective to increase adhesion strength than $C_{9}$ for APAO with high ethylene content. In addition, it was found that the adhesion strength was improved with the decrease of crystallinity in APAO/petroleum resin hot melts.

  • PDF

Synthesis of Polystyrene-b-Poly(ethylene oxide)-b-Polylactide Copolymers via Sequential Anionic and Ring-Opening Polymerizations (순차적 음이온 및 개환중합반응을 통한 폴리스티렌-폴리에틸렌옥사이드-폴리락티드 블록공증합체의 합성)

  • Song, Jie;Cho, Byoung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.458-462
    • /
    • 2009
  • We have synthesized ABC linear triblock copolymers, i.e., polystyrene-b-poly(ethylene oxide)-b-polylactide, via sequential anionic and ring-opening polymerizations. In the first anionic polymerization step, styrene was polymerized in cyclohexane using sec-butyllithium as the initiator. Poly (styryl) lithium was hydroxylated by the addition of ethylene oxide, and the subsequent protonation with methanolic HCl. In the second anionic polymerization step, potassium naphthalenide was used to deprotonate the hydroxyl group of the PS to generate the macroinitiator of PS-$O^-K^+$. Polymerization of ethylene oxide was performed in THF and terminated with methanolic HCl. In the ring-opening polymerization step, the PS-b-PEO-$AlEt_2$ macroinitiator was prepared from an $AlEt_3$/pyridine system in THF, and the polymerization of lactide was performed at $90^{\circ}C$. The resulting block copolymers showed well-defined molecular weights and narrow molecular weight distributions as revealed by $^1H$- NMR spectroscopy and gel permeation chromatography (GPC).

Effect of Acrylic Acid Contents and Inorganic Fillers on Physical Properties of Acrylic Pressure Sensitive Adhesive Tape by UV Curing (아크릴산 함량 및 무기물 충전제가 UV 경화형 아크릴 점착테이프의 물성에 미치는 영향)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.184-195
    • /
    • 2013
  • Acrylic pressure sensitive adhesive (PSA) tapes were used for the automotive, the electrical and the electronic industries and the display module junction. In this study, the manufacture of high-strength structural tape used 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AAC), and UV irradiation for photo-polymerization, and the semi-structural properties of acrylic PSA tape with the AAC content and inorganic filler $SiO_2$ content were investigated. The initial adhesion strength was lowered by the rigidity of molecule chains due to the use of AAC, and the adhesion strength increased with increasing wetting time. The wetability, contact angle, and SEM images of PSA tapes with various contents of AAC were determined. Without filler, the peel strength and dynamic shear strength of PSA tape showed inverse correlation but the peel strength and dynamic shear strength increased with increasing filler content. From these correlations the PSA tapes could be optimized for the applications requiring high performance.

Characteristics of Rutting and Moisture Susceptibility of R-EPDM Modified Asphalt Mixtures (R-EPDM 개질아스팔트 혼합물의 소성변형 및 수분민감성 특성)

  • Jo, Young-Jin;Han, Joung-Min;Noh, Young-Jin;Choi, Se-Hyu
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.87-92
    • /
    • 2010
  • This study evaluates the laboratory properties of asphalt binder and mixture modified with R-EPDM(Recycling Ethylene Propylene Dien Monometer), which consists of R-EPDM as a main ingredient that is an industrial by-product made by manufacturing waste EPDM below 50 mesh as an additive. Superpave system was used to determine the PG(Performane Grade) and evaluate the property of R-EPDM modified binder. OACs(Optimum Asphalt Contents) of R-EPDM modified asphalt mixtures were determined by Superpave mix design using gyratory compactor and wheel tracking test and moisture susceptibility test were carried out with R-EPDM modified asphalt mixtures at OACs. The results from these tests, rutting-resistance and freezing and thawing resistance by moisture susceptibility of R-EPDM modified asphalt mixtures were superior to one of general asphalt mixtures(AP-5).

New Practical and Eco-friendly Recycling method of FRP Boats (FRP선박의 재처리시스템과 활용성 연구)

  • Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2007
  • Despite of environmental problems(safety hazards), mechanical recycling of FRP boats, which involves shredding and grinding of the scrap FRP in a new product. is one of the simpler and more technically proven methods than incineration or reclamation ones. Because FRP is made up of reinforced fiber glass, it is very difficult to break into pieces. It also occurs secondary problem such as air pollution and unacceptable shredding noise level. The another urgent problem which is a serious barrier to FRP recycling is very limited reusable applications. This study is to propose a new method which is efficient and environment friendly waste FRP regenerating system. And it also have shown the polymer cement and fiber-reinforced concrete applications with the waste FRP.

  • PDF

[Retraction] Preparation of Methyl methacrylate/styrene Core-shell Latex by Emulsion Polymerization ([논문 철회] 유화중합에 의한 Methyl methacrylate/styrene계 Core-shell 라텍스 입자 제조에 관한 연구)

  • Kang, Don-O;Lee, Nae-Woo;Seul, Soo-Duk;Lee, Sun-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • Core-shell polymers of methyl methacrylate/styrene pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) as an initiator. The characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, where as polymer blonds or copolymers show a combined properties from the physical properties or two homopolymers. This unique behavior of core-shell composite latex can be used in many industrial fields. However, in preparation of core-shell composite latex, several unexpected phenomina are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, we studied the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the tore-shell structure or PMMA/PSt and PSt/PMMA. Particle size and particle size distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass transition temperature($T_g$) was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions were measured.

Effect of KOH Addition on Pore Structure of Glassy Carbon Prepared by Polymerization of Phenolic Resin (KOH 첨가에 의한 페놀수지로 제조된 유리상탄소의 미세구조제어)

  • 김지현;박세민;임연수;박홍수;김명수
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.477-482
    • /
    • 2002
  • In order to control the micro-pore structure of glassy carbon (GC), an activation agent of KOH was introduced as the glassy carbon was prepared from phenolic resin with a curing agent of phosphoric acid. The yield and properties of GC were investigated as a function of KOH content. Although the GC produced without KOH had nonporous structure except the trace of bubble formation, the GC with KOH had very porous structure. The surface area of GC with KOH increased continuously up to 870 $m^2$/g with the increase of KOH content. The carbonization yield and apparent density measured in water reduced from 40 to 15% and iron 1.5 to 0.9 g/$cm^3$, respectively, and the electrical resistivity increased from $50{\times}10^{-4}$ to $60{\times}10^{-4}$$\Omega$.cm with the increase of KOH content.