• 제목/요약/키워드: 폴리머 복합재

Search Result 102, Processing Time 0.024 seconds

Properties of Fresh Polymer Concretes Using Mixed Waste Plastics (복합 재질 폐플라스틱을 재활용한 폴리머콘크리트의 경화 전 성질)

  • Joo, Myung-Ki;Lee, Youn-Su;Kim, Moon-Chan;Kim, Youn-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.117-124
    • /
    • 2006
  • The effects of binder content and recycling mixed waste plastics(PA) content on the workability, work life and hardening shrinkage of fresh polymer concrete using mixed waste plastics are examined. As a result, the workability of the polymer concretes using mixed waste plastics tend to improve with increasing binder content, PA content and filler content. The work life of the polymer concretes using mixed waste plastics is shortened with an increase in the initiator content and curing temperature. The length change of the polymer concretes using mixed waste plastics tend to increased with Increasing binder content and PA content. The result of the present research is expected to make a contribution to the recycling of final mixed waste plastics and the continuing efforts for the development of use of the recycled products are thought to expand the horizon for the recycling of the final mixed waste plastics.

Strength Properties and Durability of Polymer Concrete Using Mixed Waste Plastics (복합재질 폐플라스틱을 재활용한 폴리머콘크리트의 강도 특성 및 내구성)

  • Joo, Myung-Ki;Lee, Youn-Su;Kim, Moon-Chan;Kim, Youn-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.219-226
    • /
    • 2006
  • The effects of binder content and PA content on the flexural, compressive and impact strengths, water absorption and frezzing and thawing of polymer concrete using mixed waste plastics are examined. As a result the flexural, compressive and impact strengths of the polymer concretes using mixed waste plastics tend to increase with increasing binder content and filler content, regardless of the PA content. The flexural, compressive and impact strengths of the polymer concretes using mixed waste plastics decrease with increasing PA content. The water absorption of the polymer concretes using mixed waste Plastics tend to decreased with increasing binder content, regardless of the PA content. The durability factor of the polymer concretes using mixed waste plastics tend to increased with increasing binder content. However, the durability factor of the polymer concretes using mixed waste plastics tend to decreased with increasing PA content.

Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2012
  • To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

Electromechanical Behaviors and Application of Carbon Nanotube Composite Actuators Consisting of Bundles and Mats (다발/매트로 구성된 탄소나노튜브 복합재 엑츄에이터의 거동특성 및 응용연구)

  • Kim, Cheol;Liu, Xinyun
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.34-39
    • /
    • 2005
  • The relationship between strain and applied potential was derived for composite actuators consisting of single-wall carbon nanotubes (SWNTs) and conductive polymers (CPs). During deriving the relationship, an electrochemical ionic approach is utilized to formulate the electromechanical actuation of the composite film actuator. This relationship can give us a direct understanding of the actuation of a nanoactuator. The results show that the well-aligned SWNTs composite actuator can give good actuation responses and high actuating forces available. The actuation is found to be affected by both SWNTs and CPs components and the actuation of SWNTs component has two kinds of influences on that of the CPs component: reinforcement at the positive voltage and abatement at the negative voltage. Optimizations of SWNTs-CPs composite actuator may be achieved by using well-aligned nanotubes as well as choosing suitable electrolyte and input voltage range.

A study of permeability of ultra-fine cement matrix for continuous fiber reinforcement (연속섬유 보강용 초미립 시멘트 매트릭스의 침적성 연구)

  • Kim, T.J.;Kim, K.S.;Choi, L.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.177-182
    • /
    • 1999
  • 사용한 보수.보강재, Rod, Fabric, Strand 형상을 콘크리트 구조물등에 보강재로 사용되어왔다. 이 재료는 해양환경하에서 내식성과 내구성을 갖는 철근및 철골대체용 복합소재와 초고층 경량 연속섬유보강 시멘트 복합재료는 탄소섬유, 아라미드섬유, 유리섬유등의 쉬트(sheet)형상을 신건재, 비자성, 비전도성, 전파차폐용 재료등에 사용할수있다. 그러나 FRP Rod를 내식성이 요구되는 철근 및 철골대체재로 사용할 경우에는 폴리머 매트릭스의 열화, 섬유와 폴리머간 계면 접착강도의 한계, 화재시 내화성, 보강재의 인발성등의 단점들을 갖고있다[1]. (중략)

  • PDF

Hot Water Resistance of Polymer Mortar Composites Depending on Unsaturated Polyester Resin Types (불포화폴리에스테르 수지의 형태에 따른 폴리머 모르타르 복합재료의 내열수성)

  • Hwang, Eui-Hwan;Song, Min-Kyu;Kim, Yong-Yeon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2018
  • The ortho- and iso- type unsaturated polyester resins were synthesized and used as a polymer binder of the polymer mortar composite. Styrene monomer and acrylonitrile were used as a diluent for the unsaturated polyester resin. Methyl ethyl ketone peroxide (MEKPO) and cobalt octoate (CoOc) were used as a curing agent and an accelerator, respectively. Four kinds of unsaturated polyester resins were prepared according to types of the resin and diluent, and used as a polymer binder in the preparation of the specimen. A total of 16 polymer mortar specimens were prepared according to the added amount of the polymer binder and subjected to a hot water resistance test, followed by compressive and flexural strength tests, and pore and SEM analyses. As a result, it was found that the strength of the specimen using the iso-type unsaturated polyester resin as the polymer binder was better than that of using the ortho-type unsaturated polyester resin. The total pore volume and diameter measured after the hot water resistance test were reduced compared to the values before the test. In the micrographs observed before the hot water resistance test, the polymer binder, filler and fine aggregate were firmly combined to the co-matrix, but the polymer binder was mostly decomposed in the micrographs observed after the test.

Study on Manufacturing Process of Self-Healing Microcapsules for Damage Repair in Polymeric Composites (폴리머 복합재의 손상보수를 위한 자가치료용 마이크로캡슐 제조공정 연구)

  • 윤성호;박희원;소진호;홍순지;이종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.793-796
    • /
    • 2003
  • This study dealt with the manufacturing process of self-healing microcapsules for damage repair in polymeric composites. The microcapsule was consisted with a DCPD (dicyclopentadiene) as the healing agent and a urea-formaldehyde resin as the wall section. The size distribution of microcapsules were measured by a particle size analyzer using a laser diffraction technique. Thermal stability of microcapsules was investigated by using a TGA under continuous and isothermal heating conditions. According to the results, these microcapsules were verified to be to thermally stable and have a great potential to be applicable for damage repair in polymeric composites.

  • PDF

A study on the manufacture of polymer concrete using the waste paint (폐 페인트를 이용한 폴리머 콘크리트의 제조에 관한 연구)

  • 이창훈;박재읍;최진호;권진회;제우성;김성호
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, the polymer concrete using the chemically treated waste paint and polystyrene foam was manufactured and their mechanical properties were evaluated. The compressive strength, specific gravity and water absorption with respect to the volume percents of the waste paint and resin were tested. From the tests, the specific gravities of the polymer concretes using the waste paint were lower than that of the conventional polymer concrete and it was recommended that they can be used for building exterior materials.

Effect of Rubber Particle Size and Polymer Properties on Impact Strength and Fracture Behavior of Rubber/Polymer Composites (고무입자의 크기와 폴리머의 물성이 고무/폴리머 복합재료의 충격강도 및 파괴거동에 미치는 영향)

  • 이창수;강병일;조길원;황운봉
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • The impact strength and fracture behavior of rubber/polymer composites were investigated with respect to two factors: (i) characteristic ratio, $C_{\infty}$ as a measure of chain flexibility of the polymer matrix and (ii) the rubber particle size in polymer blend system. In this study C was controlled by the composition ratio of polyphenylene oxide (PPO) and polystyene (PS). Izod impact test and fractographic observation of the fracture surface using scanning electron microscope were conducted. Finite element analysis were carried out to gain understanding of plastic deformation mechanism (shear yielding and crazing) of these materials. Shear yielding was found to be enhanced when the flexibility of matrix polymer was relatively low and the rubber particles were small.

  • PDF