• Title/Summary/Keyword: 폴리머콘크리트

Search Result 536, Processing Time 0.022 seconds

Vibrational Properties of High Damping Polymer Concrete with Hybrid Damper (복합구조 댐퍼를 적용한 고 감쇠 폴리머 콘크리트의 진동 특성에 관한 연구)

  • Kim, Jeong-Jin;Choi, Kyung-Suk;We, Joon-Woo;Seok, Won-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.135-142
    • /
    • 2020
  • In the case of a concrete structure, vibration problems occur under various conditions because of its low damping performance. To solve this problem, a study on the high damping performance of the polymer concrete with hybrid damper has recently been increased. Since water is not used in polymer concrete, the curing time is short. Also, the physical properties and dynamic properties of polymer concrete are quite excellent. So polymer concrete is widely expected to be used for structural materials. The hybrid damper is the structural system that consists of steel balls and viscous fluid inside the pipe which is embedded in polymer concrete. It can reduce the structural vibrations through the energy dissipation mechanism of viscous fluid and steel balls. In this study, the physical and dynamic properties of polymer concrete with hybrid damper were compared with ordinary concrete. As a result, the elasticity coefficient and the strength of the polymer concrete with hybrid damper were so much excellent. In particular, the tensile strength was 6.5 to 10 times higher than ordinary concrete. The frequency response function and damping ratio were also compared. As a result, the dynamic Stiffness of the polymer concrete was 25% greater than that of ordinary concrete. The damping ratio of the polymer concrete was approximately 3 times higher than that of ordinary concrete. Although the dynamic stiffness of the hybrid damper showed similar tendency, the damping ratio was 3.5 times higher than that of ordinary concrete. Therefore, the polymer concrete with hybrid damper was superior to ordinary concrete.

Study installing a manhole to on-site methods to assemble as use polymer concrete segment (폴리머 콘크리트 세 그먼트를 이용한 현장 조립식 맨홀 설치 연구)

  • Kim, Dong-Hun;Han, Jin-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.315-319
    • /
    • 2007
  • 지하에 설 치된 맨홀의 구조물이 노후되거나, 내부에 수 용된 시설물로 작업 공간이 협소하여 맨홀 구조물을 대개체 할 펼요가 있을 경우, 지금까지는 대부분 현장 콘크리트 타설에 의한 방법을 사용하였다. 이러한 방법은 거푸집 시공, 콘크리트 타설, 콘크리트 양생, 거푸집 철거 등의 공정이 소요되어 공사 기간이 장기화 되고, 도심지에 위치한 맨홀인 경우에는 차량과 보행자의 통행 불편을 초래하기도 하였다. 또한, 통상적으로 사용되고 있는 프리캐스트 맨홀에 비해 시공 품질이 낮아 향후 맨홀의 운용 및 유지관리에 많은 어려움을 겪는 원인이 되기도 하였다. 본 논문에서는 이러한 문제점들을 해결하기 위해, 폴리머 콘크리트를 이용하여 하부, 벽체, 상부로 구성된 다수의 세그먼트를 생산한 후, 현장에서 이들 세그먼트를 조립하여 맨홀을 설치하는 방법을 연구하였다. 가변형 거푸집을 이용한 세그먼트 제작과 조립식 블록에 의한 관구를 사용하여 현장 적용성을 높임은 물론, 프리캐스트로 생산되는 폴리머 콘크리트 맨홀 수준의 시공 품질을 확보할 수 있도록 하였다.

  • PDF

A Study on Application of High Molecular Compound for Development of Eco-friendly Concrete (친환경 콘크리트 개발을 위한 고분자 화합물의 적용에 관한 연구)

  • Ryou, Jae Suk;Lee, Yong Soo;Song, Il Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.299-305
    • /
    • 2012
  • The objective of this paper is to obtain the basic data in order to develop an eco-friendly concrete through evaluation on the properties of polymer cement mortar and concrete using PVAc (Polyvinyl Acetate), as a kind of water-soluble polymer. For this purpose, the physical properties of cement mortar and concrete which does not contain the PVAc as the control batch were compared and analyzed with those using the PVAc. And then, the replacement amount of the PVAc was 3%, 6%, 9% and 12% by binder, respectively. And also, the properties of concrete using the PVAc were evaluated, by adding an antifoaming agent in order to control the air contents increasing with an increase of amount of polymer usage. As a result, in the case of polymer cement mortar using the PVAc, it presented that the compressive strength reduced, while the performance of flexural strength and drying shrinkage increased. When the replacement of the PVAc was 6% within concrete, the compressive, tensile, flexural strength and elastic modulus were increased.

Development of Concrete-Polymer Composite(II) -Physical Properties of Polymer(Resin) Concrete- (콘크리트-폴리머 복합재료 개발(II) -폴리머(레진) 콘크리트의 물성-)

  • Hwang, Eui-Hwan;Hwang, Taek-Sung;Kil, Deog-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1066-1072
    • /
    • 1999
  • The physical properties of polymer concrete were investigated for development of high-performance construction materials. Various specimens of polymer concrete were prepared using unsaturated polyester resin as the polymer-binder with the various dosage of calcium carbonate as microfiller (5~20 wt %) and fine aggregate(10~50 wt %). For the evaluation of the physical properties of polymer concretes, tests such as compressive strength, flexural strength, water absorption test, hot water immersion test, acid resistance test and pore size distribution analysis were conducted. As a result, it is concluded that compressive and flexural strengths of polymer concretes increased up to 4 times than those of conventional cement concrete. Whereas the compressive and flexural strengths of polymer concretes tested after hot water immersion, compared with those of polymer concretes tested before hot water immersion, decreased about 67%, 47%, respectively. By hot water immersion, total pore volume and porosity(%) of polymer concretes were remarkable increased due to decomposition of polymer binder. And also, it is showed that water absorption(%) and weight loss(%) of polymer concrete specimens by acid immersion, compared with those of ordinary portland cement concrete, decreased about 1/100, 1/27, respectively.

  • PDF

Engineering Properties of Sewage Polymer Concrete Culvert (폴리머 콘크리트를 적용한 하수암거의 공학적 특성)

  • Kwon, Seung Jun;Min, Byung Yoon;Park, Sang Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.9-17
    • /
    • 2012
  • Concrete sewage culvert shows degradation with time since it is always exposed to various harmful ions, and deterioration of concrete culvert propagates to structural safety problems. After reclamation, maintenance for concrete sewage culvert is very difficult so that high durable and structural performance are essential for the sewage concrete culvert. Recently polymer concrete has been used to improve mechanical properties and durability performance. In this paper, engineering properties are evaluated for sewage culvert made with polymer concrete, and leakage and adhesive strength between joints are evaluated with small-scale models. The polymer sewage culvert shows high compressive strength over 100MPa with low water permeability and chloride penetration. Furthermore, high resistances to chemical and biological attack are evaluated. Through tests for leakage and adhesive, unification of joints is verified with evaluation of no leakage and high adhesive strength. Precast polymer sewage culvert in this paper can be actively used for severe conditions like sewage lines.

Physical and Mechanical Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 물리·역학적 특성)

  • Sung, Chan-Yong;Baek, Seung-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • This study was performed to evaluate the physical and mechanical properties of polymer concrete using unsaturated polyester resin, initiator, heavy calcium carbonate, crushed gravel, recycled coarse aggregate, silica sand and recycled fine aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were decreased with increasing the content of recycled aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were showed in $2,127{\sim}2,239kg/m^3$, 80.5~88.3MPa, 19.2~21.5MPa and $254{\times}10^2{\sim}288{\times}10^2MPa$ at the curing age 7 days, respectively. Therefore, these recycled aggregate can be used for polymer concrete.

  • PDF

The Influence of Nano Synthesized Polymer Paint on Durability of Concrete (나노합성 무기질 폴리머계 표면처리제가 콘크리트의 내구성에 미치는 영향)

  • Beak, Jong-Myeong;Park, Youg-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • This experiment was compared and analyzed between the original surface paint through chloride penetration, neutralization, freeze-thaw and chemical corrosion resistance measuring internal structure and volume of voids in order to evaluate the effect of increase in durability of the newly modeled nano synthesized polymer paint painted on concrete surface which results improvement on air permeability to increase the durability of concrete structures. The test result of measuring volume of void and inner structure, concrete, spreaded with nano synthesized polymer paint, showed decreasing trend of pore volume in the range of less than $0.1{\mu}m$ and more than $0.3{\mu}m$. Also, using an electron microscope inside showed tightness of hydration texture. Chloride penetration depth of concrete, painted with nano synthesized polymer paint, was decreased more than 92% compared to non-painted concrete and 70% with water-based epoxy painted concrete. Especially, chemical corrosion resistance test set with aqueous solution of 5% sulfuric acid, non-painted concrete and water-based epoxy painted concrete showed weight loss of 4% after dipping for 12 days. On the other hand, concrete painted with nano synthesized polymer paint showed 1.7% weight loss under the same condition. Also, it showed great result of appearance under the criteria of Tsivilis et al.

기술정보

  • 한국레미콘공업협회
    • 레미콘
    • /
    • no.9 s.25
    • /
    • pp.93-98
    • /
    • 1990
  • PDF

Characteristics of Polyester Polymer Concrete Using Spherical Aggregates from Industrial By-Products(II)(Use of Fly Ash and Atomizing Reduction Steel Slag) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(II) (플라이 애쉬와 아토마이징 제강 환원슬래그 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.364-371
    • /
    • 2015
  • For the cost down of polymer concrete, It is very important to reduce the use amount of polymer binder, which occupies most of the production cost of polymer concrete. Fly ash and atomizing reduction steel slag are spherical materials obtained from industrial by-products. Spherical atomizing reduction steel slag was manufactured using steel slag from reduction process of ladle furnace by atomizing technology. To investigate the physical properties of polymer concrete, polymer concrete specimens were prepared with the various proportions of polymer binder and replacement ratios of atomizing steel slag. Results showed that compressive and flexural strengths of the specimens were remarkably increased with the addition amount of polymer binder and the replacement ratios of atomizing steel slag. In the hot water resistance test, compressive strength, flexural strength, bulk density and average pore diameter decreased but total pore volume and pore diameter increased. We found that polymer concrete developed in this study reduced the amount of polymer binder by 18.2% compared to the conventional product because of the remarkable improvement of workability of polymer concrete using spherical fly ash and atomizing reduction steel slag instead of calcium carbonate (filler) and river sand (fine aggregate).