• Title/Summary/Keyword: 폭발하한계 농도

Search Result 21, Processing Time 0.037 seconds

Explosion Characteristics of Bituminous Coal Dusts in Cement Manufacturing Process (시멘트 제조공정에서 유연탄 분진의 폭발특성)

  • Kim, Won-Hwai;Lee, Seung-Chul;Seung, Sam-Sun;Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.257-263
    • /
    • 2008
  • We have examined explosion characteristics of bituminous coal dusts in cement manufacturing process. In order to find the thermal properties, we investigated weight loss and ignition temperature of coal materials using TGA and DSC. Also specific surface area of dust was investigated. Dust explosion experiments with Hartman's dust explosion apparatus have been conducted by varying concentration and size of coal dust for explosion probability and lower limit explosion concentration. According to the results for thermal properties, there is a little change by dust size. However, the specific surface area of dust is increased by decreasing dust size. The explosion test results show that small size and increasing concentration of dusts make dust explosion easier. And we find that the lower limit explosion concentration of bituminous coal is $0.3mg/cm^3$ and the probability is 100% on $0.9mg/cm^3$ in 170/200 mesh used in cement manufacturing process.

The Prediction of Lower Explosion Limit of n-Hexadecane (n-Hexadecane의 폭발하한계 예측)

  • Ha, Dong-Myeong;Park, Sang-Hun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.163-163
    • /
    • 2013
  • 최근의 수많은 산업 현장에서 취급하고 있는 각종 화학물질은 잠재적 위험성이 크므로 보관, 수송 및 취급할 때 특별한 주의가 필요하다. 공정 설계 시 정확하지 않은 폭발한계를 사용함으로서 사고가 유발되는 경우가 많다. 따라서 사업장에서 사용되고 있는 화학물질의 화재 및 폭발 특성치인 인화점, 폭발한계 등을 정확히 파악하는 것은 중요하다. 인화점은 하부인화점과 상부인화점으로 나누고 있고 있으며, 인화점은 가연성 액체의 화재 위험성을 나타내는 지표로써, 가연성액체의 액면 가까이서 인화할 때 필요한 증기를 발산하는 액체의 최저온도 또는 점화원 존재시 인화가 일어날 수 있는 최저온도, 그리고 가연성증기의 포화증기압이 공기와 혼합기체의 폭발한계 하한농도와 같게 되는 온도로 정의한다. 폭발한계는 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도범위 내에서만 연소가 이루어지는 혼합범위를 말한다. 본 연구에서는 실제 공정에서 사용되고 있는 n-Hexadecane의 인화점을 측정하여 이를 기존 문헌값과 비교 하였고, 측정된 인화점을 이용하여 폭발한계를 예측하였다. 예측된 폭발한계를 여러 문헌에 제시된 자료과 비교하여 공정안전에 타당한 자료를 제시하였다. 본 연구는 n-Hexadecane을 취급하는 공정에서 안전 확보의 중요한 지침 마련과 MSDS D/B의 최신화에 유용한 정보를 제공하는데 목적이 있다.

  • PDF

양론계수와 연소열을 이용한 Ether류의 폭발하한계 예측

  • 하동명;최용찬;이성진;이수경
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.428-433
    • /
    • 2003
  • 화재 및 폭발 특성치로 인화점, 최소발화온도, 폭발한계, 최소발화에너지, 연소열 등을 들 수 있다. 연소특성은 인화성용제들(석유류 및 알코올류 등)의 취급, 저장, 수송에서 포함되어 있는 잠재 위험성을 평가할 때 고려된다. 여러 연소특성 가운데 폭발한계(explosive limits)는 가연성물질(가스 및 증기)을 다루는 공정 설계 시 고려해야 할 중요한 변수로써, 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도범위 내에서만 연소가 이루어지는 혼합범위를 말한다.(중략)

  • PDF

Fire and explosion risk of metal particles with the same mean diameter (동일 입경 조건에서의 금속분진의 화재.폭발위험성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.376-377
    • /
    • 2011
  • 최근 Mg, Mg-Al합금, Al은 전자제품의 케이스, 차량의 휠 등의 신소재로서 활용성이 높아 사회적 수요가 급격히 늘고 있다. 이러한 수요 증가와 함께 관련 사업장에서는 취급 과정에서 폭발사고 위험성이 높아지고 있는데, 2010년도에는 국내 사업장에서 금속 분진에 의한 폭발사고가 4건이 발생하여 인명 및 재산피해가 발생하였다. Mg-Al합금의 폭발사고로 사망 1명과 부상 2명이 발생하였으며, Al분진의 폭발사고는 3건이 발생하여 사망 2명과 부상 3명의 인명피해로 이어졌다. 사고조사를 통하여 사업장에서의 금속분진에 대한 위험인식이 매우 낮은 것이 유사 사고가 반복되고 있는 가장 큰 이유로 알려지고 있는데, 이는 금속분진에 대한 부족한 안전기술정보와 밀접한 관련이 있다. 본 연구에서는 Mg, Mg-Al합금, Al등을 취급하는 관련 사업장에서 폭발사고 예방대책을 위하여 활용할 수 있는 폭발특성에 관한 안전기술정보 제공을 목적으로 하고 있다. 보다 구체적으로는 사고 다발 금속분진에 대한 위험성 이해에 도움을 될 수 있도록 동일 입경분포 조건에서의 위험성을 정량적으로 평가하였으며, 이를 위하여 각 금속분진의 동일 입경 조건에서 최대폭발압력, 폭발하한계 등의 폭발위험성 데이터를 실험적으로 조사 하였다. 조사한 시료는 평균입경 200 mesh의 Al, Mg, Mg-Al(60:40 wt%)로서 입도분석기(Beckman Coulter LSI 3320)를 사용하여 측정한 결과 평균입경은 약 $155{\mu}m$로 나타났다. Al분진의 농도변화에 따른 폭발압력을 조사한 결과, 최대폭발압력(Pmax)은 7.9 bar였으며 최대폭발압력상승속도 (dt/dP)max는 농도 $1500[g/m^3]$에서 322 [bar/s]로 최대가 되었으며 폭발 하한계(LEL)는 $70[g/m^3]$가 얻어졌다. 반면에 순수한 Mg의 LEL은 $30[g/m^3]$였으며 Pmax는 6.4 bar, (dP/dt)max는 100 [bar/s]가 얻어졌다. 이러한 결과로부터 LEL이 낮은 Mg는 Al보다 연소성이 큰 것으로 나타났으며, Al은 화염을 유지하는데 필요한 최저 열분해 가스농도를 확보하는데 Mg보다도 고농도의 분진이 필요함을 알 수 있었다. 또한 Mg-Al(60:40 wt%)의 LEL은 $50g/m^3$이었으며 Pmax는 9.4 bar, (dP/dt)max는 472 [bar/s]가 얻어졌다. 이러한 결과로부터 Mg-Al(60:40 wt%)합금의 연소성을 살펴보면 착화하기 쉬운 정도는 Mg와 Al의 성분비에 의해 변화하지만 Mg와 Al의 중간 정도로 나타나는 반면, Pmax는 Mg 또는 Al의 단독 물질 성분보다도 매우 큰 것을 알 수 있었다. 본 연구를 통하여 단일 성분의 Mg와 Al보다도 Mg와 Al이 일정 비율로 구성된 Mg-Al합금의 경우가 화재폭발 위험성이 증가한다는 사실을 알 수 있었으며, 이와 같은 폭발위험특성 자료를 활용하여 분진의 보관, 취급, 폐기 등의 지속적 관리가 필요하며 사업장 특성에 적합한 안전대책을 통한 사고예방대책이 요구된다.

  • PDF

The Measurement of the Explosion Limit and the Minimum Oxygen Concentration of Gasoline According to Variation in Octane Number (옥탄가 변화에 따른 가솔린의 폭발한계 및 최소산소농도 측정)

  • Kim, Won-Kil;Kim, Jung-Hun;Ryu, Jong-Woo;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.618-622
    • /
    • 2017
  • Gasoline is a widely used product as a source for energy in homes, the automotive industry, and for industrial power generation, and it is also a product with a high risk of fire and explosion. In this study, to examine the risk for explosion for gasoline, PG, MG and RG, which are categorized according to octane number, were used as test specimens to measure their explosion limit according changes in oxygen concentration. The explosion limit for 21% oxygen concentration in air were confirmed to be 1.5~10.9%, 1.4~8.1%, and 1.3~7.6%, respectively, and the MOC for each of the test sample were confirmed to be 10.9%. The explosion limit measured in the test performed in this study confirmed between a 1.2%~7.6% wider explosion limit for the currently accepted MSDS for gasoline, and therefore it is considered that the results of this study can provide significant reference for preventing fires and explosions for process used gasoline.

A Study on the Hazard of Converted Gas for Surface Heating Treatment (표면열처리용 변성가스의 위험성에 관한 연구)

  • Choi Jae-Wook;Min Wong-Chul;Lim Woo-Sub;Lee Byoung-Chul;Kim Dong-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.9-14
    • /
    • 2005
  • To estimate the explosion characteristics of converted gas, the study was examined into effects of altering oxygen concentration and adding hydrogen. From the result of the experiment, as the concentration of converted gas and hydrogen were increased at $21\%$ oxygen concentration, the lower explosion limit was low. Minimum explosion oxygen concentration was $6\%$. Maximum explosion pressure of converted gas was $4.61 kg_f/cm^2$, now Maximum explosion pressure rising velocity was $130.75 kg_f/cm^2/s$ at converted gas concentration $40\%$. Also, minimum ignition energy was 0.13 mJ at converted gas concentration $50\%$.

  • PDF

The Explosion Characteristics of City Gas on the Change of Oxygen Concentration and Pressure (산소농도와 압력 변화에 따른 도시가스의 폭발특성)

  • Choi Jae-Wook;Lee In-Sik;Park Sung-tae
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.38-43
    • /
    • 2005
  • To examine the characteristics of the explosion of city gas, the concentration of oxygen was changed with the change of initial pressure. From the result of the experiment, as the concentration of oxygen was low, the explosion limit became narrow and the minimum concentration of oxygen for the explosion was $12\%$. Furthermore, As the increase of the initial pressure, explosion ranges were a little increased. And as the change of the initial pressure, the maximum explosion pressure were $6.3 kgf/cm^2{\cdot}g,\;12.7 kgf/cm^2{\cdot}g$ and the maximum pressure rising velocity were $245.63 kgf/cm^2/s,\;427.88 kgf/cm^2/s$.

  • PDF

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Risk Assessment of Fire and Explosion of Methane (메탄의 화재 및 폭발 위험성 평가)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.1-7
    • /
    • 2005
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosive limit, flash point, autoignition temperature, minimum oxygen concentration, heat of combustion etc.. Explosive limit and autoignition temperature are the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limit and autoignition temperature of methane fur LNG process safety were investigated. By using the literatures data, the lower and upper explosive limits of methane recommended 4.8 vol$\%$ and 16 vol$\%$, respectively. Also autoignition temperatures of methane with ignition sources recommended $540^{\circ}C$ at the electrically heated cruicible furnace (the whole surface heating) and recommended about $1000^{\circ}C$ in the local hot surface. The new equations for predicting the temperature dependence and the pressure dependence of the lower explosive limits for methane are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

  • PDF

A Study on Fire and Explosion Characteristics of Propane Gas (프로판가스의 화재 및 폭발 특성치에 관한 연구)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.33-39
    • /
    • 2006
  • For the safety design and operation of many gas process, it is necessary to know certain explosion limit, flash point, auto ignition temperature and minimum oxygen concentration of handling substances. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of propane, explosion limit and autoignition temperature of combustion characteristics for propane were investigated. By using the literatures data, the lower and upper explosion limits of propane recommended 2.0 vol% and 10.0 vol%, respectively. Also autoignition temperatures of propane with ignition sources recommended $450^{\circ}C$ at the electrically heated cruicible fumace(the whole surface heating) and recommended about $960^{\circ}C$ at the local hot surface. The new equations for predicting the temperature and the pressure dependence of the explosion limits of propane are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

  • PDF