• 제목/요약/키워드: 포화토

Search Result 264, Processing Time 0.031 seconds

Determination of operating offline detention reservoir considering system resilience (시스템 탄력성을 고려한 빗물저류조 운영수위 결정)

  • Lee, Eui Hoon;Lee, Yong Sik;Jung, Donghwi;Joo, Jin Gul;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.403-411
    • /
    • 2016
  • Recently, the number of occurrences of inundation and the severity of flood damage has increased rapidly as the frequency of localized heavy rainfall and the ratio of impervious area increased in urban areas. Most local governments focus on employing structural measures (e.g., the construction of detention reservoirs/pump stations, rehabilitation of drainage and sewer pipes) to prevent urban inundation. On the other hand, the effectiveness of implementing such structural measures is being dimished because there are already many inundation prevention facilities. The limitation of structural measures can be overcoming by employing non-structure measures, such as flood alerts and the operation of drainage facilities. This study suggests the pump operation rule (i.e., suggesting pump stop level) for a new detention reservoir operating method, which triggers the operation of a pump based on the water level at the monitoring node in urban drainage system. In the new reservoir operation, a total of 48 rainfall events are generated by the Huff distribution for determining the proper pump stop level. First, the generated rainfall events are distributed as frequencies, quartiles, and durations. The averaged system resilience value was determined to range from 1.2 m to 1.5 m is based on the rainfall-runoff simulation with rainfall generated by the Huff distribution. In this range, 1.2 m was identified considering the safety factor of 1.25 by the Standard on sewer facilities in 2011.

Soil Characteristics and its Influences on the Yields and Quality of Red Pepper in Yeongyang Area, Gyeongbug Province (경북 영양지역 고추 재배지 토양의 특성)

  • Choi, Jyung;Son, Il-Soo;Jung, Yeun-Tae;Lee, Dong-Hoon;Park, Man;Choi, Choong-Lyeal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.145-152
    • /
    • 2000
  • The total acreage of 4,894ha of upland soils in Yeongyang area, the main crop cultivated were red-pepper. They were distributed mainly on local valleys and alluvial fans(54.9%), about 61.2% had 7~15% slopes, and about 73.2% had fine loamy family in soil texture. the soils were classified into Ochrepts(73.7%). Udalfs(16.9%), Fluvents(6.2%) and Psamments(3.2%) etc. The upland soils with 100~250m in altitude and "moderately well drained" had higher contents in inorganic nutrients. The red-pepper Produced in the high altitude(>400m) were lower in quality and yields, while the content of sugar and yields of pepper produced in fine loamy textured soils were higher than other soil textures. The yields of red-pepper produced in the "moderately well drained" soils which had better water supply capacity were higher than "well drained" soils.

  • PDF

Analysis of the Reinforcement Effect of Aging Reservoir Reinforced by Environmental Soil Stabilizer as Chemical Grouting Material (친환경 지반안정재를 약액주입재로 사용하여 보강한 노후 저수지의 보강효과 분석)

  • Kim, Se-Min;Seo, Se-Gwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, a study related to laboratory and pilot test were performed to use an environmental soil stabilizer developed to induce a hardening reaction similar to that of Ordinary Portland Cement (OPC) by using industrial by-products of blast furnace slag and the combustion ash of a circulating fluidized bed boiler as the main material. For this, specimens were prepared using liquid A of sodium silicate and silica sol, and liquid B of an environmental soil stabilizer (or OPC), and laboratory tests were performed to analyze the strength and environmental characteristics. And pilot test was performed on the aging reservoir, field permeability test and electrical resistivity survey were performed in the field to analyze the applicability. As a result of the laboratory test, the homo-gel compressive strength of the chemical injection material using the environmental soil stabilizer as liquid B was about 2.88 to 3.23 times greater than that of OPC. In addition, the elution amount of most heavy metals was lower than that of OPC, and the survival rate in the fish, acute toxicity test was 100%. Therefore, when judged based on the results of the laboratory test, it was analyzed to be superior to OPC in terms of strength and environment. In the results of the pilot test in the aging reservoir, when the environmental soil stabilizer was reinforced with liquid B of the chemical injection material, the coefficient of permeability in the aging reservoir decreased to 1/50 level. In addition, as a result of the electrical resistivity survey, it was analyzed that the electrical resistivity inside the aging reservoir increased as time passed, the saturation zone disappeared, and the overall reinforcement.

Evaluation of Suction Installation for the Circular Pipe into Low-water Sandy Ground via Model Test (모형실험을 활용한 저수심 사질토 지반에서 원형강관 설치 석션압 평가)

  • Xin, Zhen-Hua;Kim, Jae-Hyun;Lee, Ju-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2021
  • In this study, a circular pipe can be installed by suction pressure for construction on soft ground with a low-water level. A series of laboratory-scale model tests were conducted in sandy ground to comprehend the suction pressure of the circular pipe in low-water levels. For repeated tests on saturated sandy soil, a container was mounted with three vibration generators on the floor. A repetitive vibration was applied using the vibration system for ground compaction. In the model tests, different diameters and thicknesses on saturated sandy soil with a water depth were considered. The result showed that the suction pressure increased with increasing penetration depth of the circular pipe. Moreover, the suction pressure required to penetrate the pipe decreased with increasing diameter. In the low-water level, the total suction pressure measured at the top lid increased because additional suction pressure is required to lift the water column. On the other hand, this led to a decrease in suction pressure to penetrate the circular pipe because the weight of the water column is applied as a dead load. Therefore, it is necessary to consider the water level to design the required suction pressure accurately.

A Study on Reliquefaction Behavior of Railway Embankment Using 1g Shaking Table Test (1g 진동대 실험을 이용한 철도 제방의 재액상화 거동 연구)

  • Chae, Minhwan;Yoo, Mintaek;Lee, Il-Wha;Lee, Myungjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.71-81
    • /
    • 2021
  • The purpose of this study is liquefaction phenomenon was simulated using the 1g shaking table test. Analysis of liquefaction and Re-liquefaction behavior according to the ground conditions was analyzed when an embankment exists above the ground. The soil used in the experiment was silica sand and the ground composition was a liquefied layer of 50cm (Case 1), a non-liquefied layer of 17.5cm and a liquefied layer of 32.5cm (Case 2). The embankment was formed by fixing the height of 10cm and the slope of the slope at a ratio of 1:1.8. For seismic waves, excitation of a 5Hz sine wave was performed for 8 seconds, and a total of 5 case excitations were performed. In Case 1, it was confirmed that liquefaction occurred at all depths during the first vibration excitation at the free-field and that liquefaction did not occur at all depths except 5cm at the third vibration excitation. At the center of the embankment, liquefaction occurred up to a depth of 20cm during the first vibration excitation, and it was confirmed that liquefaction did not occur at all depths except for a depth of 5cm during the second vibration excitation.

A Method of Obtaining Correction Factor for Settlement Prediction of Soft Ground Using Correlation of Theoretical and Measured Settlement of Gimhae-Jinyoung through SPSS Analysis (이론 및 계측 침하량의 SPSS 상관분석을 통한 김해진영 연약 지반의 침하량 예측 보정계수 산출법)

  • Jang, Won-Cheol;Kim, Byoung-Il;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.502-508
    • /
    • 2021
  • Predicting the settlement of soft ground is an important aspect of soft ground design. In this study, a method is proposed that increases the reliability of settlement predictions based on-site investigation data, including piezocone penetration test results, at the Gimhae-Jinyoung district, adjacent area to the Nakdong River. Soils in the area waweres classified using the Robertson Chart (1986, 1990), and theoretical settlement was calculated using the equations proposed by Terzaghi (1925) and Sanglerat (1972). SPSS was used to obtain the correlation between theoretical and measured settlements. Results produced settlement prediction errors for the Terzaghi and Sanglerat methods of 17.28% and 26.96%, respectively. A correction factor calculated by SPSS correlation analysis for the relation between and theoretical and measured settlements is proposed that improves the reliability of settlement prediction in soils of the classification examined.

Reliable Assessment of Rainfall-Induced Slope Instability (강우로 인한 사면의 불안정성에 대한 신뢰성 있는 평가)

  • Kim, Yun-Ki;Choi, Jung-Chan;Lee, Seung-Rae;Seong, Joo-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.53-64
    • /
    • 2009
  • Many slope failures are induced by rainfall infiltration. A lot of recent researches are therefore focused on rainfall-induced slope instability and the rainfall infiltration is recognized as the important triggering factor. The rainfall infiltrates into the soil slope and makes the matric suction lost in the slope and even the positive pore water pressure develops near the surface of the slope. They decrease the resisting shear strength. In Korea, a few public institutions suggested conservative slope design guidelines that assume a fully saturated soil condition. However, this assumption is irrelevant and sometimes soil properties are misused in the slope design method to fulfill the requirement. In this study, a more relevant slope stability evaluation method is suggested to take into account the real rainfall infiltration phenomenon. Unsaturated soil properties such as shear strength, soil-water characteristic curve and permeability for Korean weathered soils were obtained by laboratory tests and also estimated by artificial neural network models. For real-time assessment of slope instability, failure warning criteria of slope based on deterministic and probabilistic analyses were introduced to complement uncertainties of field measurement data. The slope stability evaluation technique can be combined with field measurement data of important factors, such as matric suction and water content, to develop an early warning system for probably unstable slopes due to the rainfall.

Comparison of 1-g and Centrifuge Model Tests for Similitude Laws (상사법칙 검증을 위한 1-g 모형실험과 원심모형실험의 비교 연구)

  • Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo;Ko Hon-Yim
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.59-67
    • /
    • 2006
  • The centrifuge and 1-g shaking table tests were performed simultaneously to compare the dynamic behaviors of loose sands of the same geotechnical properties. The prototype soils were 10 m thick liquefiable loose sands. The geometric scaling factors were 20 for 1-g and 40 for centrifuge tests. The excess pore pressure, surface settlement, and acceleration in the soil were measured at the same locations in the 1-g and centrifuge tests. The total excess pore pressure from development to dissipation was measured. In the centrifuge test, viscous fluid was used as the pore water to eliminate the time scaling difference between dynamic time and dissipation time. In the 1-g tests, the steady state concept was applied to determine the unit weight of the model soil, and two different time scaling factors were applied for the dynamic time and the dissipation time. It is concluded that the 1-g tests can simulate the excess pore pressure of the prototype soil if the permeability of the model soil is small enough to prevent dissipation of excess pore pressure during shaking and the dissipation time scaling factor is properly determined.

Evaluation of Removal Efficiency of Pollutants in Constructed Wetlands for Controlling Nonpoint Sources in the Daechung Reservoir Watershed (대청호 유역 비점오염원 제어를 위한 생태습지의 오염물질 제거효율 평가)

  • Pyeol-Nim Park;Young-Cheol Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland's capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.

Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation (점적관개 시 토성별 습윤.건조 특성 비교)

  • Kim, Hak-Jin;Son, Dong-Wook;Hur, Seung-Oh;Roh, Mi-Young;Jung, Ki-Yuol;Park, Jong-Min;Rhee, Joong-Yong;Lee, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.