• Title/Summary/Keyword: 포화된 다공성 매체

Search Result 11, Processing Time 0.026 seconds

Wave Propagation Characteristics in Saturated Porous Media I. Theoretical Solution (포화된 다공성매체에서 파동의 전파특성 I. 이론해의 유도)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.95-103
    • /
    • 2007
  • An analytical closed-form solution for wave propagation velocity and damping in saturated porous media is presented in this paper The fully coupled field model with compressible solid Brains and pore water were used to derive this solution. An engineering approach for the analysis of fully saturated porous media was adopted and closed-form solutions for one dimensional wave propagation in a homogeneous domain were derived. The solution is highly versatile in that it considers compression of the solid grains, compression of the pore water, deformation of the porous skeleton, and spatial damping and can be used to compute wavespeeds of first and second kind and damping coefficients in various geologic materials. This solution provides a means of analyzing the influence of material property variations on wavespeed and attenuation. In Part 2 of this work the theoretical solution is incorporated into the numerical code and the code is used in a parametric study on wave propagation velocity and damping.

Theoretical Formulation of Porous Medium Behavior Depending on Degree of Saturation (포화도에 따른 다공질 매체 거동의 이론적 정식화)

  • Park, Tae Hyo;Jung, So Chan;Kim, Won Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.81-88
    • /
    • 2001
  • The behavior of porous medium is modeled by linear thermoporoelastic behavior, linear poroviscoelastic behavior, poroplastic behavior, and poroviscoplastic behavior, etc. The behavior has, in general, a complicated aspect which makes a mechanical description of the problem with time. Constitutive modeling for deformation behavior of porous medium with coupling effects is needed since there is interaction between the constituents in pores with a relative velocity to each other. In this work, it is explained 3-dimensional behavior depending on degree of saturation for porous medium composed of homogeneous, isotropic materials. It is obtained the governing equations based on continuum porous mechanics. In addition, it is developed constitutive model which can be understood of behavior for porous medium which can be understood, analysed behavior of porous medium. It can be accomplished exact analysis and prediction of behavior in porous medium. The behavior for porous medium is analysed exactly, and the prediction of deformation behavior is accomplished. Consequently, it will be basis to analyze 3-dimensional behavior in municipal solid waste landfill, and the practical using of porous medium ground which are composed of nonhomogeneous, anisotropic materials can be done widely.

  • PDF

Estimation of Fluid Saturations Using Agarose Standard in NMR Imaging (자기 공명 영상법에서 Agarose 표준 물질을 사용한 유체 포화도의 계산)

  • Kim, Kyung-Hoe
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.160-165
    • /
    • 1999
  • Agarose gels can be used as reference standards for the measurement of fluid properties in porous media because the relaxation properties of the gel reference standard and those of the fluid in porous media can be closely matched. The use of reference standard to determine porosity and saturation is discussed and the requirements for gel NMR properties given. The relaxtion times of agarose gels measured at 2.0 Tesla are illustrated as a function of agarose and paramagnetic impurity ($CuSO_4$) concentrations. This work shows an empirical result between agarose gel composition and gel relaxtion times. The average value for the porosity distribution is 17.7%, which compares well with the value calculated with the gravimetric analysis. Finally, two phase immiscible displacement using agarose gels as a reference standard was performed. The saturation profiles appear to be consistent with what one might calculate for a one-dimensional displacement in a uniform porous media.

  • PDF

Wave Propagation Characteristics in Saturated Porous Media II. Parametric Studies (포화된 다공성매체에서 파동의 전파특성 II. 파라미터 연구)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.191-206
    • /
    • 2007
  • The general theoretical solutions for the wavespeed and damping derived in Part 1 of this work, are incorporated into the computer code. In this paper the code is used in a parametric study of the influence of excitation frequency and variations in material properties on propagation velocity and damping. Compressional wave velocity for waves of the first kind is shown to vary as a function of the frequency-permeability product, with a zone where wavespeed transitions from a lower bound value to a higher bound value with increasing values of the product. Damping is seen to be a maximum where the rate of change in wavespeed is greatest. Waves of the second kind also show a transition in wavespeed from near zero at low values of the frequency-permeability product to an upper bound value at higher values of the product.

A Study on the Development of Quantitative Analysis Methods to Characterize the Transport of Microplastics in Saturated Porous Media (포화 다공성 매체에서 미세플라스틱 이동 특성 규명을 위한 정량분석 방법 개발 연구)

  • Suhyeon Park;Minjune Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.376-376
    • /
    • 2023
  • 전 세계적으로 중요한 담수 자원인 지하수의 미세플라스틱 오염에 대한 우려가 커지고 있다. 지하수 환경에서 미세플라스틱의 오염을 예측하고 평가하기 위해 대수층 내 현장 실태조사가 수행 중에 있으며, 실험실 규모의 컬럼 실험을 통해 지하수에서 미세플라스틱 이동 메커니즘을 조사하는 연구들이 수행되고 있다. 이러한 연구들은 많은 개수의 분석 시료를 동반하며, 환경 중 미세플라스틱 정량분석을 위해서 고가의 분석기기(라만분광기, 푸리에 변환 적외선(FTIR) 분광기, 열분해 가스크로마토그래피 질량분석기)를 사용하여 플라스틱의 종류를 판별하고 개수를 측정하고 있다. 또한, 컬럼 실험을 수행한 대부분의 선행 연구에서는 미세플라스틱 정량분석을 위해 탁도 분석, 분광광도계를 이용한 흡광도 분석, 현미경을 이용한 계수 방법 등을 이용하여 고가의 분석기기를 사용하지 않고 연구를 수행하였다. 하지만, 이러한 방법들은 유체 속 다른 물질이 포함되어있을 경우에 민감하고 농도를 비율 혹은 개수로 표현하기 때문에 질량 측면에서 미세플라스틱의 농도를 과소·과대 평가할 수 있다. 특히, 현미경을 이용한 계수 방법의 경우에는 분석에 많은 시간이 소요된다는 단점이 있다. 위에 언급한 다양한 분석법들의 단점들을 보완하기 위하여, 본 연구에서는 대수층 내 미세플라스틱 이동 특성을 규명하기 위한 실내 실험에 사용될 수 있는 형광이미지 기반의 미세플라스틱 정량분석법을 개발하였다. Nile Red 형광염료를 이용하여 미세플라스틱을 염색하고 사진을 촬영하여 미세플라스틱 시료의 질량과 미세플라스틱 형광이미지의 형광강도 간 상관관계를 분석하였다. 또한, Nile Red로 염색된 미세플라스틱 입자의 수중 노출 테스트를 진행하여, 실내 대수층 모의실험 시 미세플라스틱 질량을 정량화할 수 있는 적용 가능성을 평가하였다. 상관 분석 결과, 미세플라스틱 질량과 이미지의 형광강도는 높은 상관관계를 보였으며, 수중 노출 실험 전과 후의 미세플라스틱 입자의 형광강도 차이는 미미한 것으로 나타났다. 이러한 연구결과를 통해 본 연구에서 개발된 미세플라스틱 정량분석 방법이 포화 다공성 매체로 구성된 컬럼실험 시 유출수의 미세플라스틱 질량 추정에 유용하게 사용될 것으로 생각되며, 대수층 내 미세플라스틱의 이동 특성 규명 연구에 많은 도움이 될 것으로 기대된다.

  • PDF

A Study on the Theory and Its Verification of Dynamic Analysis Program (MPDAP) for Modelling of Saturated Multi Phase Porous Media (포화된 다공성 지반의 모델링을 위한 동적해석 프로그램(MPDAP)의 이론 및 이의 검증에 괄한 연구)

  • 김광진;문홍득
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.5-18
    • /
    • 1997
  • In order to make reliable ground shock predictions in saturated geological media, it is necessary to use multi -phase material models and numerical codes. This paper presents the results of theoretical study of the fundamental behavior of multi-phase porous media subjected to high dynanlic loadings, and deals with the development of numerical code MPDAP with JWL(Jones-Wilkins-Lee) model, which is capable of considering the kinds and characters of explosives. To check the global equilhorium equations of the numerical code, we carried out some verifications. In the cases of the elastic spherical wave propagation in a single phase medium, one-dimensional linear ronsolidation, and one timensional wave propagation in saturated linear elastic soils and rocks, the results calculated by MPDAP show close agreement with closed-form solutions or numerical solutions generated with two phase code.

  • PDF

A Particle Tracking Method for the Lagrangian-Eulerian Finite Element Method in 3-D Subsurface System (3차원 지표하 시스템에서 Lagrangian-Eulerian 유한요소법에 대한 입자추적 알고리즘)

  • Lee, Jae-Young;Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.205-215
    • /
    • 2009
  • The conventional numerical models to analyze flow in subsurface porous media under the transient state usually generate numerical oscillation and unstability due to local flux domain for critical cases such as infiltration into initially dry soil during rainfall period. In this case, it is required refined mesh and small time step, but it decrease efficiency of computation. In this study, numerical unstability in discontinuity domain is removed by applying particle tracking algorithm to simulate unsteady subsurface flow with inflow boundary condition. Finally the hybrid LE FEM improving numerical stability is proposed. The hypothetical domains with unsteady uniform and nonuniform flow field were used to demonstrated algorithm verification. In comparison with analytic solution, we obtained reasonable results and conducted simulation of hypothetical 3-D recharge/pumping area. The proposed algorithm can simulate saturated/unsaturated porous media with more practical problems and will greatly contribute to accuracy and stability of numerical computation.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.

Transport of PVP-coated Silver Nanoparticles in Saturated Porous Media (포화된 다공성매체에서 PVP-코팅된 은나노입자의 이동성 연구)

  • Bae, Sujin;Jang, Min-Hee;Lee, Woo Chun;Park, Jae-Woo;Hwang, Yu Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.104-110
    • /
    • 2016
  • The transport of silver nanoparticles (AgNPs) was investigated through a column packed with sand. A series of column experiments were carried out to evaluate the effect of ionic strength (IS), pH, electrolyte type and clay mineral on mobility of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs). The deposition of PVP-AgNPs was increased with increasing solution ionic strength and decreasing pH. Furthermore, the depositon of PVP-AgNPs was affected by the electrolyte type (NaCl vs. NaNO3) and was shown to be greater at NaNO3 solution. Also, the transport of PVP-AgNPs was greatly increased after the pre-deposition of clay particles on sand. Our results suggest that various environmental factors can influence the mobility of PVP-AgNPs in soil-groundwater systems and should be carefully considered in assessing their environmental risks.

Effect of Cyclic Injection on Migration and Trapping of Immiscible Fluids in Porous Media (공극 구조 내 교차 주입이 비혼성 유체의 포획 및 거동에 미치는 영향)

  • Ahn, Hyejin;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.37-48
    • /
    • 2019
  • In geological $CO_2$ sequestration, the behavior of $CO_2$ within a reservoir can be characterized as two-phase flow in a porous media. For two phase flow, these processes include drainage, when a wetting fluid is displaced by a non-wetting fluid and imbibition, when a non-wetting fluid is displaced by a wetting fluid. In $CO_2$ sequestration, an understanding of drainage and imbibition processes and the resulting NW phase residual trapping are of critical importance to evaluate the impacts and efficiencies of these displacement process. This study aimed to observe migration and residual trapping of immiscible fluids in porous media via cyclic injection of drainage-imbibition. For this purpose, cyclic injection experiments by applying n-hexane and deionized water used as proxy fluid of $scCO_2$ and pore water were conducted in the two dimensional micromodel. The images from experiment were used to estimate the saturation and observed distribution of n-hexane and deionized water over the course drainage-imbibition cycles. Experimental results showed that n-hexane and deionized water are trapped by wettability, capillarity, dead end zone, entrapment and bypassing during $1^{st}$ drainage-imbibition cycle. Also, as cyclic injection proceeds, the flow path is simplified around the main flow path in the micromodel, and the saturation of injection fluid converges to remain constant. Experimental observation results can be used to predict the migration and distribution of $CO_2$ and pore water by reservoir environmental conditions and drainage-imbibition cycles.