• Title/Summary/Keyword: 포틀랜드 시멘트

Search Result 398, Processing Time 0.021 seconds

Effect of Cement Contents and Combinations of Accelerators on Strength Development of Concrete Cured at 10℃ (10℃ 양생조건에서 단위 시멘트량 변화 및 경화촉진제의 복합사용에 따른 강도발현 성능에 관한 연구)

  • Song, Young-Chan;Lee, Tea-Gyu;Kim, Yong-Ro;Seo, Chi-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.94-99
    • /
    • 2018
  • The purpose of this study is to investigate the effect of combinations of different accelerators mixed on the early age strength development of concrete of 21 to 27MPa in the curing temperature of $10^{\circ}C$ compared with existing early strength agent. The present study was assessed the early strength development of combinations of three different accelerating admixtures with early strength type agent comparing to single accelerating admixture with early strength type agent. As a result of this study, the effect of $CaBr_2+NaSCN+DEA$ combination on strength development showed better than $CaBr_2$ or NaSCN alone with early strength type agent. Therefore, we observed that concrete using $CaBr_2+NaSCN+DEA$ combination with early strength agent was achieved 5MPa 12hours earlier than use of $CaBr_2$ or NaSCN alone.

Manufacture of Ordinary Portland Cement Clinker Using Cement Paste of the Waste Concrete (폐콘크리트로부터 회수된 시멘트 페이스트 미분말의 시멘트 원료화 연구)

  • Ahn, Ji-Whan;Kim, Hyung-Seok;Cho, Jin-,Sang;Han, Gi-Chun;Han, Ki-Suk;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.804-810
    • /
    • 2003
  • The fine powder produced by heating and grinding of the waste concrete in the waste construction was investigated whether utilize as substitution raw material of SiO$_2$, CaO, and Al$_2$O$_3$ source for OPC clinker manufacture is possible or not. In order to synthesize OPC clinker, limestone, shale, converter slag and fly ash were used as main raw materials, and modulus was fixed LSF 91.0, SM 2.60, IM 1.60. The synthesized clinkers were characterized. The Main products of synthesized clinker were C$_3$S, ${\beta}$-C$_2$S, C$_3$A, C$_4$AF as OPC clinker at 1,43$^{\circ}C$. As a result of TG-DTA and burnability index(B.U) analysis of each raw mixtures, the formation temperature of clinker phases was similar and B.I was showed easy burning as 48.6∼51.4.

A Study on the Properties of Mortar using Wet-type Waste Sludge according to Heating Temperature (가열온도별 습식방식 폐슬러지를 활용한 모르타르의 특성에 관한 연구)

  • Kang, Suk-Pyo;Cho, Ku-Young;Lee, Jun;Kim, Chang-Oh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 2011
  • Recently, urban redevelopment programs and expansion of social infrastructure have caused massive amounts of construction waste in construction fields, and the mounds of it keep increasing every year. The disposal of construction waste is emerging as a national and social issue and the recycled powder generated by the treatment process of waste concrete is all being abolished or buried. Therefore, the purpose of this study is to utilize waste sludge generated by the wet-type treatment process of waste concrete as materials(binder, filler) for cement composite. This study evaluates physical and mechanical properties of mortar using recycled powder according to heating temperature, contents and applications. As a result of the chemical analysis, recycled powder is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than OPC. The charateristics of mortar using recycled powder, according to drying and heating temperature, shows that as the heating temperature increases, flow decreases. Also, compressive strength and porosity of mortar using recycled powder was superior when heating temperature was $600^{\circ}C$. Thus, it is revealed that an effective development of recycled powder is possible since the binder by cement composite recovers a hydraulic property during heating at $600^{\circ}C$.

  • PDF

Strength of Recycled Concrete with Furnace Slag Cement under Steam Curing Condition (순환골재 및 고로슬래그 시멘트를 사용한 증기양생 콘크리트의 강도 특성)

  • Lee Myung-Kue;Kim Kwang-Seo;Lee Keun-Ho;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.613-620
    • /
    • 2005
  • There are some problems in utilizing recycled concrete aggregate go structural use because of the difficulties concerning about quality control and durability. It seems to be possible to utilize recycled concrete aggregate for making concrete products because quality control of concrete products is easier than ready-mixed concrete, but there are little studies about the properties of the steam-cured recycled aggregate concrete. In this study, various tests were performed such as compressive strength, flexural strength, splitting tensile strength, bonding strength and chloride ion penetration test to evaluate the effect of substitution of recycled concrete aggregate. The results of strength test showed that the concrete strength decreased with the increase of the substitution ratio of recycled concrete aggregate, but it was in the reasonable range and almost equal to that of normal concrete below the substitution ratio of $50\%$. On the other hand, strength test of furnace slag cement concrete shows that the strength of recycled concrete with furnace slag cement under curing condition lower than that of recycled concrete with ordinary portland cement under same condition. From the result of this study, it can be concluded that recycled concrete aggregate is able to be utilized for structural use but substitution ratio should be decided with care in each case. The result of this study could be used as the basic data for the structural use of recycled concrete aggregate.

The Properties of Multi-Component Blended High Fluidity Mortar (다성분계 고유동 모르타르의 특성)

  • Kim, Tae-Wan;Kang, Choonghyun;Bae, Ju-Ryong;Kim, In-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • This research presents the results of an investigation on the characteristic of multi-component blended high fluidity mortars. The binder was blended ordinary Portland cement(OPC), ground granulated blast furnace slag(GGBFS), calcium sulfoaluminate(CSA) and ultra rapid setting cement(URSC). The GGBFS was replaced by OPC from 30%(P7 series), 50%(P5 series) and 70%(P3 series), CSA and URSC was 10% or 20% mass. The superplasticizer of polycarboxylate type were used. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. Test were conducted for mini slump, setting time, V-funnel, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA or URSC contents for all mixtures. Moreover, the setting time and drying shrinkage ratio decrease with and increase in CSA or URSC. CSA decreased dry shrinkage but URSC had less effect. However, the mixed binders of CSA and URSC had a large effect of reducing drying shrinkage by complementary effect. This is effective for improving the initial strength of URSC, and CSA is effective for the expansion and improvement of long-term strength.

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

Effect of Anhydrite on the Mechanical and Durability Properties of High Volume Slag Concrete (무수석고 함량이 고로슬래그 미분말을 대량 활용한 콘크리트 특성에 미치는 영향)

  • Moon, Gyu-Don;Kim, Joo-Hyung;Cho, Young-Keun;Choi, Young-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.239-246
    • /
    • 2014
  • High volume slag concrete is attracting new attention and are thought to have promising potential for industrial applications, partly due to the climate debate, but especially due to their very low heat of hydration and their good durability in chemically aggressive environments. However, High volume slag concretes tend to have slower strength development especially. In this study, the effect of anhydrite ($CaSO_4$) on the mechanical and durability performance of high volume slag concrete were investigated. The main variables were anhydrite contents (0, 4, 6, 8, 10%). Test results show that 4~8% anhydrite concrete have improved engineering properties (hydration, compressive strength, shrinkage, creep, carbonation) as control concrete at early ages.

Properties of High Volume Blast Furnace Slag Concrete using Recycled Aggregate with Incineration Waste Ash (소각장애시의 치환에 따른 고로슬래그 미분말 다량치환 순환골재 콘크리트의 특성)

  • Han, Cheon-Goo;Lee, Hyang-Jae;Kim, Jun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • This study is the study desiring to solve the problem by utilizing the kinds of recycled resources considered to be troubled complementarily. Namely the reaction of potential hydraulicity of Blast Furnace Slag Powder (BS) shall be reacted with the alkali of Recycled Fine Aggregates Coarse Aggregate, it has been experimented to obtain the optimum value with the replacement ratio of incineration plant ash (WA) treated with the slaked lime as the experiment variable by solving the alkali of shortage with the Ordinary Portland Cement (OPC). As a result, the liquidity and the air volume are declined slightly as the replacement ratio of incineration plant ash WA increases, the mixture of incineration plant ash WA 1% has been analyzed to be the most suitable considering the viewpoint of effective handling of waste as the compression and the tensile strength showed the maximum value before and after 1% even though it was disadvantageous with the increase of chloride content.

Foamed Concrete with a New Mixture Proportioning Method Comparable to the Quality of Conventional ALC Block (ALC 블록성능의 기포콘크리트 배합설계 연구)

  • Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study is to develop a high-performance foamed concrete made with a new mixture proportioning as an alternative of autoclaved lightweight concrete (ALC) block. For the early-strength gain of the foamed concrete under an atmospheric curing condition, the binders and chemical agents were specially contrived as follows: 3% anhydrous gypsum was added to ordinary portland cement (OPC) in which $3CaO{\cdot}SiO_2$ content was controlled to be above 60%; and the content of polyethylene glycol alkylether in a polycarboxylate-based water-reducing agent was modified to be 28%. Using these binders and chemical agents, 11 mixes were prepared with the parameters of W/B ratio (30% to 20% in a interval of 2.5%) and unit binder content ($400kg/m^3$ to $650kg/m^3$ in a interval of $50kg/m^3$). The quality and availability of the mixed foamed concrete were examined according to the minimum requirements specified in the KS for ALC block and existed conventional foamed concrete. The measured properties satisfied the minimum requirement of KS for ALC block and proved that the developed high-performance foamed concrete had considerable potential for practical application.

Effect of Consolidation using Artificial Porous Material for Stone Cultural Property (인공 다공질체를 이용한 석조문화재 강화제의 처리효과)

  • Lee, Jae-Man;Lee, Myeong-Seong;Kim, Jae-Hwan;Lee, Mi-Hye
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2010
  • In order to clarify the effect of consolidant, the artificial porous material with low intensity was manufactured using granite powder and Portland cement. We have prepared four kinds of alkoxysilane system consolidants, a acrylic resin and a epoxy resin and investigated about characteristics before and after consolidation. As a result of the research, Silres BS OH 100 was effective for density and surface hardness. SS-101 with hydrophobicity and Site SX-RO with hydrophilicity had the good durability over salts weathering. On the other hand, Syton HT-50 and Paraloid B72 were easily destructed by salt weathering because they were concentrated on surface area by the low penetration depth. Araldite 2020 was the most effective consolidant for improvement of physical properties.