• Title/Summary/Keyword: 포틀랜드

Search Result 412, Processing Time 0.029 seconds

Physical and Mechanical Properties of Cements for Borehole and Stability Analysis of Cement Sheath (관정 시멘팅 재료의 물리역학물성 및 시멘트층의 안정성 분석)

  • Kim, Kideok;Lee, Hikweon;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • We carried out laboratory material tests on two cements (KS-1 ordinary Portland and Class G) with changing W/S (Water/Solid) and the content of fly ash in order to evaluate their physical and mechanical properties. The specimens of KS-1 ordinary Portland cement were prepared with varying W/S (Solid=cement) in weight, while those of Class G cement were prepared with changing the content of fly ash in volume but maintaining W/S (Solid=cement+fly ash). The results of the material tests show that as the W/S in KS-1 ordinary Portland cement and the content of fly ash in Class G cement increase, the properties (density, sonic wave velocity, elastic constants, compressive and tensile strengths, thermal conductivity) decrease, but porosity and specific heat increase. In addition, an increase in confining pressure and in the content of fly ash leads to plastic failure behavior of the cements. The laboratory data were then used in a stability analysis of cement sheath for which an analytical solution for computing the stress distribution induced around a cased, cemented well was employed. The analysis was carried out with varying the injection well parameters such as thickness of casing and cement, injection pressure, dip and dip direction of injection well, and depth of injection well. The analysis results show that cement sheath is stable in the cases of relatively lower injection pressures and inclined and horizontal wells. However, in the other cases, it is damaged by mainly tensile failure.

Hydration Properties of Ordinary Portland Cement Using Mixture of Limestone and Blast Furnace Slag as Minor Inorganic Additives (소량 혼합재로서 석회석과 고로슬래그를 복합 사용한 보통 포틀랜드 시멘트의 수화특성)

  • Lee, Seung-Heun;Lim, Young-Jin;Cho, Jae-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.3-9
    • /
    • 2015
  • In this study, hydration properties of ordinary Portland cement were examined, shown from a limestone and blast furnace slag alone or their mixture up to 10% as a minor mineral additives. As of setting time, it was identified that final setting became faster as the amount of limestone mixture increased, which showed limestone accelerated early hydration faster than blast furnace slag. This is because limestone did accelerate the hydration of alite. At the age of 3 days, limestone 5%-blast furnace slag 5% mixture had the highest compressive strength of mortar. It is because hydration acceleration of alite by limestone, and $Ca(OH)_2$ that was additionally formed by hydration acceleration of alite reacted with blast furnace slag, and as a result, additionally created C-S-H hydrate. Regarding the hydration properties by the age of 7 and 28 days, limestone 3%-blast furnace slag 7% of composited mixture showed the largest compressive strength, and in comparison with the 3 days in curing age. This period is when hydration reaction of blast furnace slag is active and the amount of hydrate depends on the amount of blast furnace slag mixture more than that of the limestone mixture. And in order to vitalize hydration reaction of blast furnace slag the amount of $Ca(OH)_2$ created has to increase, and thus, a small amount of limestone is necessary that can accelerate the hydration of alite. Therefore, after the age of 7 days, the fact that there were a large amount of blast furnace slag mixture and small amount of limestone mixture was effective to the strength development of ordinary Portland cement.

APICAL MICROLEAKAGE OF MTA WITH 4-META/MMA & TBB RESIN AS A ROOT-END FILLING MATERIAL (MTA와 4-META/MMA & TBB레진 혼합 재료의 치근단 미세누출에 관한 연구)

  • Kim, Jin-Cheol;Kim, Mi-Ri;Ko, Hyun-Jung;Yang, Won-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.371-376
    • /
    • 2009
  • We evaluated in vitro microleakage of Mineral Trioxide Aggregate (MTA) powder with 4-methacryloxyethyl trimellitate anhydride (4-META) / methyl methacrylate (MMA) & tri-n-butylborane (TBB) resin as a retrograde filling material by using methylene blue dye method. Fifty-two single rooted, extracted teeth were instrumented and obturated with gutta percha and AH plus sealer. The apical 3mm of each root was resected and 3mm deep ultrasonic root end preparation was done. External surface of roots was coated with nail varnish. Prepared teeth were randomly divided into five groups; Negative control: completely covered with nail varnish; Positive control: coated with nail varnish except for apical foramen; Group 1 (retrofilled with Portland cement); Group 2 (retrofilled with MTA); Group 3 (retrofilled with MTA powder mixed with 4-META/MMA & TBB resin). Immediately after completion of root-end filling, all specimens were submerged in methylene blue dye for 72 hours in $37^{\circ}C$incubator. The roots were longitudinally sectioned and measured for extent of dye penetration by three different examiners under microscope (${\times}$10). The results were statistically analyzed using one way ANOVA and Turkey's HSD test. No leakage was evident in negative control and complete leakage in positive control group. Group 3 showed significantly less leakage than group 1 and 2 (p < 0.01). There was no significant difference between group 1 and 2 (p > 0.01). It was concluded that MTA powder with 4-META/MMA & TBB resin was excellent in reducing initial apical microleakage.

알칼리-골재팽창을 최소화시키는 포틀랜드 제올라이트 시멘트

  • 한국양회공업협회
    • Cement
    • /
    • s.108
    • /
    • pp.57-60
    • /
    • 1987
  • 이 논문에서는 통상의 포졸란 대신에 제올라이트 물질 즉, 화산 응회암을 적절히 분쇄한 후 혼합해서 만든 시멘트의 특성 변화에 대해 논하였다. 이러한 치환이 알칼리-골재 팽창 반응을 최소화시키고 장기강도를 향상시키는 장점이 있다는 사실도 밝혀냈다. 특히 제올라이트를 미리 열처리해서 첨가했을 때 이러한 팽창감소 효과가 현저하다는 것도 발견하였다. 강도증진 효과는 포졸란 유리상의 활성도에 비해 제올라이트 광물의 활성도가 높기 때문으로 해석되며 팽창의 감소는 비정질 수화 규산염이 먼저 알칼리와 반응을 하는 성질이 있기 때문으로 판단된다.

  • PDF

INTERVIEW - 한국C&T(주) 대표이사 김훈석

  • Kim, Ja-Hyeon
    • Cement
    • /
    • s.200
    • /
    • pp.36-39
    • /
    • 2013
  • 포틀랜드 시멘트만이 유일하던 지난 1976년, 제설과정에서 발생하는 부산물인 슬래그(slag)를 재활용한 시멘트를 국내 최초로 생산한 한국C&T(주)는 1985년 무재해 3배 달성업체로 노동부 은탑산업상을 수상한 바 있으며 1986년 증권감독원으로부터 우량기업으로 선정되는 등 양질의 슬래그 시멘트 생산을 통해 연관산업 발전에 이바지해왔다. 신뢰에 기반을 둔 경영과 끊임없는 기술개발을 토대로 2014년 힘찬 도약을 준비해 나가고 있는 한국C&T(주) 김훈석 대표이사를 만났다.

  • PDF

Flexural Performance of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 휨 성능)

  • Lee, Nam-Kon;Hwang, Hye-Zoo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.567-574
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh(red clay) has been studied for a partial or complete replacement of portland cement. Most of existing studies focused on the mechanical properties of the Hwangtoh concrete including the compressive strength, drying shrinkage, creep. In the present study, the flexural capacity of the beams made with the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated Hwangtoh replacing all the cement. The simple beams were tested under two point static loading. The flexural strength, cracking moment, deflection, and ductility were compared with those of the beams made with ordinary portland cement concrete.

A Study on the Reuse of Modified and Quenched Converter Slag as Cement Additives (개질.수쇄한 전로슬래그의 시멘트 혼화재로 활용에 관한 연구)

  • Ko In-Yong;Jin Byung-Sub;Kim Young-Whan
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.23-28
    • /
    • 2003
  • Converter slag was reduced and modified with the addition of 5~10 weight percent of $SiO_2$, $Al_2O_3$ and $SiO_2+Al_2O_3$. which was water quenched and used as a cement additives. Additive was mixed from 10 to 30 weight percent with ordinary portland cement and made 9 kinds of mixed cement. Compressive strength of mixed cement mortar was tested md compared with com pressive strength of ordinary portland cement mortar. Effect of hydration reaction on the compressive strength of cement mortar was investigated by means of x-ray diffraction and scanning electron microscopy.