• 제목/요약/키워드: 포톤 카운팅

검색결과 3건 처리시간 0.014초

배열형 실리콘광증배소자를 이용한 포톤 카운팅 검출기 설계를 위한 몬테칼로 시뮬레이션 연구 (Monte-carlo Simulation for X-ray Photon Counting using MPPC Arrays)

  • 이승재;백철하
    • 한국방사선학회논문지
    • /
    • 제12권7호
    • /
    • pp.929-934
    • /
    • 2018
  • 영상의 질 향상과 물질 분석 등을 위해 엑스선을 카운팅하여 검출하기 위한 연구가 활발하다. 본 연구에서는 MPPC 어레이를 사용하여 엑스선 포톤 카운팅을 위한 검출기를 설계하였고, 시뮬레이션을 통해 검출기 특성을 평가하였다. GATE를 사용하여 엑스선과 섬광체와 반응한 위치 정보를 획득하였고, 이 정보를 DETECT2000의 빛 발생 위치로 사용하였다. 0.5 mm와 1 mm 두께의 GAGG 섬광체를 사용하였으며, $4{\times}4$ 어레이의 MPPC를 통해 발생된 빛을 획득하였다. 각 채널별로 획득한 빛의 신호를 통해 영상을 재구성하여 설계한 검출기의 분해능을 확인하였다. 0.5 mm와 1 mm 두께의 GAGG 섬광체에서 모두 2 lp/mm 이상의 영상을 획득하였다. 본 검출기를 엑스선 시스템에 사용할 경우 포톤 카운팅이 가능한 저비용의 시스템을 구축할 수 있을 것이다.

포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식 (Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.64-69
    • /
    • 2008
  • 얼굴영상의 인식 기술은 보안과 감시를 비롯하여 머신 인터페이스와 콘텐츠 검색 등에서 활용이 광범위 하다. 그러나 주로 고해상도 영상이 연구의 대상이었고 원거리에서 획득된 저해상도 표적에 대하여 상대적으로 드물게 연구가 이루어졌다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법을 이용하여 저해상도 환경에서 얼굴영상의 인식을 수행한다. 포톤 카운팅 선형판별법은 Fisher 선형 판별법에서 발생하는 특이행렬 문제없이 Fisher의 최적화 기준을 실현한다. 즉, 차원의 축소나 특징 추출 과정 없이 고차원 공간에서 최적화된 투영을 위한 선형판별함수를 구성하고 이를 이용하여 판정하므로 저해상도 환경을 비롯한 얼굴영상의 왜곡의 극복에 효과적이다. 실험 결과는 제안한 방법이 주성분 분석을 활용하는 Eigen face 또는 주성분 분석과 Fisher 선형판별법이 결합된 Fisher face보다 우수하다는 것을 보여준다.

다중 분류기의 판정단계 융합에 의한 얼굴인식 (Multi-classifier Decision-level Fusion for Face Recognition)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.77-84
    • /
    • 2012
  • 얼굴인식 기술은 지능형 보안, 웹에서 콘텐츠 검색, 지능로봇의 시각부분, 머신인터페이스 등, 활용이 광범위 하다. 그러나 일반적으로 대상자의 표정과 포즈 변화, 주변의 조명 환경과 같은 문제가 있으며 이와 더불어 원거리에서 획득한 영상의 경우 저해상도를 비롯하여 블러와 잡음에 의한 영상의 열화 등의 여러 가지 어려움이 발생한다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법(Linear Discriminant Analysis)을 이용한 다중 분류기(Classifier)에 의한 판정을 융합하여 얼굴 영상 인식을 수행한다. Fisher 선형판별법은 집단 간 분산을 최대로 하고 집단 내 분산을 최소로 하는 공간으로 선형 투영하는 방법으로, 학습영상의 수가 적을 경우 특이행렬 문제가 발생하지만 포톤카운팅 선형 판별법은 이러한 문제가 없으므로 차원축소를 위한 전 처리 과정이 필요 없다. 본 논문의 다중 분류기는 포톤 카운팅 선형판별법의 유클리드 거리(Euclidean Distance) 또는 정규화된 상관(Normalized Correlation)을 적용하는 판정규칙에 따라 구성된다. 다중분류기의 판정의 융합은 각 분류기 cost의 정규화(Normalization), 유효화(Validation), 그리고 융합규칙(Fusion Rule)으로 구성된다. 각 분류기에서 도출된 cost는 같은 범위로 정규화된 후 유효화 과정에서 선별되고 Minimum, 또는 Average, 또는 Majority-voting의 융합규칙에 의하여 융합된다. 실험에서는 원거리에서 획득한 효과를 구현하기 위하여 고해상도 데이터베이스 영상을 인위적으로 Unfocusing과 Motion 블러를 이용하여 열화하여 테스트하였다. 실험 결과는 다중분류기 융합결과의 인식률은 단일분류기보다 높다는 것을 보여준다.