• Title/Summary/Keyword: 포접화합물 냉각특성

Search Result 11, Processing Time 0.027 seconds

A Study on Cooling Characteristics of Clathrate Compound with Concentration of TMA (TMA 농도에 따른 포접화합물의 냉각특성에 대한 연구)

  • Kim Jin-Heung;Chung Nak-Kyu;Kim Chang-Oh
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2005
  • This study is investigated the cooling characteristics of the TMA clathrate compound including TMA (Tri-methyl-amine, (CH₃)₃N) of 20~25 wt% as a low temperature storage material at -5℃ heat source. The results showed that as the concentration of TMA is increased, phase change temperature and specific heat are increased, but the supercooling and retention time of liquid phase are decreased. Especially, low temperature storage material containing TMA 25 wt% has the average of phase change temperature of 5.8℃, supercooling of 8.0℃, retention time of liquid phase for 10 minutes and specific heat of 4.099 kJ/kg℃ in the cooling process. From the results of this study, TMA clathrate compound showed higher phase change temperature than water md supercooling repression effect.

A Study on the Cooling Characteristics of TMA by an Additive (첨가제에 의한 TMA의 냉각특성에 대한 연구)

  • Chung Nak-Kyu;Kim Jin-Heung;Kim Chang-Oh;Kang Seung-Hyun
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.117-122
    • /
    • 2005
  • This study is performed to investigate the cooling characteristics of TMA $25\;wt\%$ clathrate compound with an additive; the phase change temperature, the degree of supercooling, specific heat and the rate of volume change. The used additive is ethanol and the heat source temperature is $-7^{\circ}C$. Experimental results are as follows: 1) The phase change temperature is increased by $0.32\~0.96^{\circ}C$ during the cooling process of TMA $25\;wt\%$ clathrate compound with ethanol. 2) The degree of supercooling is repressed by $0.9^{\circ}C$ in case of TMA $25\;wt\%$ clathrate compound with $0.5\;wt\%$ ethanol. 3) The specific heat is increased by $0.19\;kJ/kg^{\circ}C$ in case of TMA $25\;wt\%$ clathrate compound with $0.l\;wt\%$ ethanol. 4) The rate of volume change is decreased by $1.15\~l.5\%$ in case of TMA $25\;wt\%$ clathrate compound with ethanol.

Low Temperature Latent Heat Storage Material of Cooling Characteristics According to Concentration of TMA (TMA 농도에 따른 저온잠열축열물질의 냉각특성)

  • Kim, Chang-Oh;Chung, Hyun-Ho;Chung, Nak-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • The ice storage system uses water for low temperature latent heat storage. However, a refrigerator capacity are increased and COP are decreased due to supercooling of water in the course of phase change from liquid to solid. This study investigates the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N$) of 20~25 wt% as a low temperature latent heat storage material. The results showed that the phase change temperature are increased and the supercooling degree and the specific heat are decreased according to the weight concentration of TMA increased. Especially, the clathrate compound containing TMA 25wt% has the average phase change temperature of $5.8^{\circ}C$ and the supercooling degree of $8.0^{\circ}C$, retention time of liquid phase for 651sec and specific heat of 3.499 kJ/kgK in the cooling process. This expressed good than different concentration of TMA cooling characteristic. Like this, to apply TMA 25wt%-water clathrate compound is determined by advantageous as the low temperature latent heat storage material.

A Study on the Cooling Characteristics and Subcooling Improvement of TMA-Water Clathrate Compound (TMA-물계 포접화합물의 냉각특성과 과냉각 개선에 대한 연구)

  • Park, Seul-Hyun;Kim, Chang-Oh
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.85-92
    • /
    • 2014
  • This study carried out experimental on the cooling characteristics of clathrate compound including TMA(Tri-Methyl-Amine ; $(CH_3)_3N$) as a low temperature latent heat storage material. And additive was used for subcooling improvement of TMA-water clathrate compound. The conclusion of above study is as following ; TMA 25wt%-water clathrate compound is shown stable phase change and low subcooling degree. The subcooling was improved in the case ethanol($CH_3CH_2OH$) 0.5wt% is added to TMA 25wt%-water clathrate compound.

A Study on Cooling Characteristic of TMA-Water Clathrate Compound for Low Temperature Latent Heat Storage (저온잠열저장을 위한 TMA-물계 포접화합물의 냉각특성에 대한 연구)

  • Kim, Chang-Oh;Kim, Jin-Heung;Chung, Nak-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2471-2475
    • /
    • 2007
  • Clathrate compound is the material that host in hydrogen bond forms cage and guest is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation. But clathrate compound still had supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. In this study was investigated the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N)$ of 20${\sim}$25 wt% as a low temperature latent heat storage material. And ethanol$(CH_3CH_2OH)$ was added and its cooling characteristics were studied experimentally to restrain supercooling of TMA-water clathrate compound.

  • PDF

The Study on Cooling Characterics of TMA Clathrate with Ethanol (에탄올을 첨가한 TMA 포접화합물의 냉각특성에 대한 연구)

  • 김창오;김진흥;정낙규;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.634-640
    • /
    • 2002
  • The purpose of this study is to investigate the propriety of TMA clathrate as a cold storage medium. Particularly, this is to examine the extent of subcooling improvement when the additives is added to the TMA clathrate, because water used for cold storage ma terial has low phase change temperature and subcooling. This study has been analyzed and compared pure water with TMA 30 wt% clathrate how phase change temperature, subcooling and specific heat in the various concentrations are changed. This results prove low phase change temperature and subcooling control effect when the ethanol is added to the TMA 30 wt% clathrate than the TMA 30 wt% clathrate. In addition, it results low specific heat when there is added to the TMA 30 wt% clathrate over 0.5 wt% ethanol in the cold heat source temperature under $-7^{\circ}C$. The other side, it results high specific heat when the ethanol is added in it at the cold heat source temperature under $-5^{\circ}C$. Therefore, it is found that the additive must be controlled by available solution limit and study for new additive must be lasted to know its effect.

A study on cooling characteristics of clathrate compound for cold storage applications (저온축열용 포접화합물에 냉각특성에 관한 실험적 연구)

  • 한영옥;김진흥
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.205-214
    • /
    • 1999
  • The objective of this paper is to investigate the thermal properties of TMA clathrate compound applicable to cold storage system for building air-conditioning. Especially, the test tube experiments are performed by comparing and analyzing the temperature of phase change, specific heat and subcooling characteristic according to the variation of density, temperature of heat source and charging quantity in TMA clathrate compound. The results are summarized as follows:1) $-15^{\circ}C$ is not proper as the temperature of heat source because the temperature of subcooling is above $8.3^{\circ}C$ 2) temperature of phase change is dropped as the temperature of heat source is lower, 3) the effect of subcooling suppression with about 8$^{\circ}C$ is confirmed when the temperature of heat source is $-10^{\circ}C$ in case of 26, 27, and 30wt%, while the temperature of subcooling is about $0^{\circ}C$ when the temperature of heat source is $-15^{\circ}C$ in case of 25, 26 and 30wt%. Thus, the effect of subcooling suppression is greater as the temperature of heat source is lower. Additionally, the concentrative study is needed on mass concentration causing the phase change without subcooling phenomenon when the temperature of heat source is $-15^{\circ}C$. Thus, it is concluded that TMA clathrate compound has enough thermal properties as the cold storage medium for building air-conditioning.

  • PDF

The Effects of Additives on the Cooling Characteristic of a Clathrate Compound (포접화합물의 냉각특성에 대한 첨가제의 영향)

  • Kim Jin Heung;Chung Nak Kyu;Kim Suk Hyun;Kim Chang Oh
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.125-130
    • /
    • 2005
  • This study was peformed to investigate the phase change temperature, the supercooling, the maintenance time of liquid phase and the change rate of volume of TMA 30 $wt\% clathrate compound with additives. TMA 30 $wt\% clathrate compound with additive was cooled at heat source temperature of $-6^{circ}C$. The additives are ethylene glycol and chloroform. Their concentration are 0.1$wt\% respectively. The experimental results showed that the phase change temperature was not affected by additives and this was average $5.3^{circ}C$. Also the supercooling and the maintenance time of liquid phase were decreased by additives. Especially, the average value of supercooling showed by $8.8^{circ}C$ and the maintenance time of liquid phase was by 19 minutes in the case of chloroform 0.1$wt\%. Additionally, the average change rate of volume showed by $1.26{\~}1.31\%$ according to additives and the volume was decreased by the phase change from liquid to solid.

A Study on Cooling Characteristics of Low Temperature Thermal Storage Material with Additives (첨가제를 첨가한 저온축열물질의 냉각특성에 대한 연구)

  • Chung, Nak-Kyu;Kim, Jin-Heung;Chung, Jong-Hun;Kim, Chang-Oh;Kang, Seung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1746-1750
    • /
    • 2004
  • The objective of this study is to investigate the effect of supercooling repression on the clathrate compound by adding additives. For this purpose, phase change temperature and supercooling were measured when additives added to TMA30wt% clathrate for heat source temperature of $-6^{\circ}C$. The experimental results show that the phase change temperature with the chloroform of 0.1wt% is higher by $0.3^{\circ}C$ than TMA30wt% and the supercooling with the surfactant 0.1wt% is reduced by $9.2^{\circ}C$.

  • PDF

A Study on the Cooling Characteristics Improvement of TMA-Water Clathrate Compound by Ethanol (에탄올에 의한 TMA-포접화합물의 냉각특성 개선에 대한 연구)

  • Lee, Jong-In;Kim, Chang-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • This study aims to find out cooling characteristics of TMA(Tri-Methyl-Amine, $(CH_3)_3N$) 25wt%-water clathrate compound with ethanol($CH_3CH_2OH$) such as supercooling, phase change temperature and specific heat. For this purpose, ethanol is added as per weight concentration and cooling experiment is performed at $-6{\sim}-8^{\circ}C$, cooling heat source temperature, and it leads the following result. (1) Phase change temperature is decreased due to freezing point depression phenomenon. Especially, it is minimized as $3.8^{\circ}C$ according to cooling source temperature in case that 0.5wt% of ethanol is added. (2) If 0.5wt% of ethanol is added, average supercooling degree is $0.9^{\circ}C$ and minimum supercooling is 0.8, $0.7^{\circ}C$ according to cooling heat source temperature. The restraint effect of supercooling is shown. (3) Specific heat shows tendency to decrease if ethanol is added. It is $3.013{\sim}3.048\;kcal/kg^{\circ}C$ according to cooling heat source temperature if 0.5wt% of ethanol is added. Phase change temperature higher than that of water and inhibitory effect against supercooling can be confirmed through experimental study on cooling characteristics of TMA 25wt%-water clathrate compound by adding additive, ethanol. This can lead to shorten refrigerator operation time of low temperature latent heat storage system and improve COP of refrigerator and efficiency of overall system. Therefore energy can be saved and efficiency can be improved much more.