• 제목/요약/키워드: 포인트 클라우드 모델

검색결과 59건 처리시간 0.023초

포인트 클라우드를 이용한 블록체인 기반 설명 가능한 인공지능 연구 (Explanable Artificial Intelligence Study based on Blockchain Using Point Cloud)

  • 홍성혁
    • 융합정보논문지
    • /
    • 제11권8호
    • /
    • pp.36-41
    • /
    • 2021
  • 인공지능을 이용하여 예측이나 분석하는 기술은 지속적으로 발전하고 있지만, 의사결정 과정을 명확히 해석하지 못하는 블랙박스 문제가 존재한다. 따라서 인공지능 모델의 의사결정 과정에서 사용자의 입장에서 해석이 불가능하여 결과를 신뢰할 수 없는 문제가 발생한다. 본 연구에서는 인공지능의 문제점과 이를 해결하기 위한 블록체인을 활용한 설명 가능한 인공지능에 대해 연구를 진행하였다. 블록체인을 이용해서 설명 가능한 인공지능 모델의 의사결정 과정에서의 데이터를 타임스탬프 등을 이용하여 부분별로 블록체인에 저장한다. 블록체인을 이용하여 저장된 데이터의 위변조 방지를 제공하고 블록체인의 특성상 사용자는 블록에 저장된 의사결정 과정등의 데이터를 자유롭게 접근할 수 있다. 설명 가능한 인공지능 모델의 구축이 힘든 것은 기존 모델의 복잡성이 큰 부분을 차지한다. 따라서 포인트 클라우드를 활용해서 3차원 데이터 처리와 가공과정의 효율성을 높여서 의사결정 과정을 단축해 설명 가능한 인공지능 모델의 구축을 원활하게 한다. 블록체인에 데이터 저장과정에서 데이터 위변조가 발생할 수 있는 오라클 문제를 해결하기 위해 저장과정에 중간자를 거치는 블록체인 기반의 설명 가능한 인공지능 모델을 제안하여 인공지능의 블랙박스 문제를 해결하였다.

건축 MEP 역설계 지침을 위한 라이다 기반 포인트 클라우드 데이터 자료 구조 및 프로세스 기초 연구 (A Basic Study on Data Structure and Process of Point Cloud based on Terrestrial LiDAR for Guideline of Reverse Engineering of Architectural MEP)

  • 김지은;박상철;강태욱
    • 한국산학기술학회논문지
    • /
    • 제16권8호
    • /
    • pp.5695-5706
    • /
    • 2015
  • 최근 국내외 건설 분야에서 건축물 리노베이션 및 유지보수를 위한 BIM 적용이 활발해지는 추세이나, 상당수 기존 건축물이 현 상태를 반영하지 않은 2D 도면을 보유함에 따라 이를 바탕으로 한 BIM 모델 작성이 어려운 상황이다. 따라서 본 연구는 역설계 기술을 활용하고자, 건축 MEP 역설계 지침을 위한 포인트 클라우드 데이터 관련 데이터 구조 및 프로세스를 분석하고, 역설계 지침을 위한 고려사항을 도출하였다. 국내 시장에서 3차원 스캐닝 기술의 활발한 적용을 위해, 프로젝트 수행 초기 단계인 지상 라이다를 이용한 현장에 대한 데이터 취득, 취득 단계에서 얻은 포인트 클라우드 데이터의 기초 처리 및 프로세스 분석에 대해 연구 목적을 두고 있다.

다시점 RGB-D 카메라를 이용한 실시간 3차원 체적 모델의 생성 (Real-time 3D Volumetric Model Generation using Multiview RGB-D Camera)

  • 김경진;박병서;김동욱;권순철;서영호
    • 방송공학회논문지
    • /
    • 제25권3호
    • /
    • pp.439-448
    • /
    • 2020
  • 본 논문에서는 다시점 RGB-D 카메라의 포인트 클라우드 정합을 위한 수정된 최적화 알고리즘을 제안한다. 일반적으로 컴퓨터 비전 분야에서는 카메라의 위치를 정밀하게 추정하는 것은 매우 중요하다. 기존의 연구에서 제안된 3D 모델 생성 방식들은 많은 카메라 대수나 고가의 3차원 Camera를 필요로 한다. 또한 2차원 이미지를 통해 카메라 외부 파라미터를 얻는 방식들은 큰 오차를 가지고 있다. 본 논문에서는 저가의 RGB-D 카메라를 8개 사용하여 전방위 자유시점을 제공할 수 있는 3차원 포인트 클라우드 및 매쉬 모델을 생성하기 위한 정합 기법을 제안하고자 한다. RGB영상과 함께 깊이지도 기반의 함수 최적화 방식을 이용하고, 초기 파라미터를 구하지 않으면서 고품질의 3차원 모델을 생성할 수 있는 좌표 변환 파라미터를 구하는 방식을 제안한다.

실시간 3차원 객체 검출을 위한 포인트 클라우드 기반 딥러닝 모델 경량화 (Lightweight Deep Learning Model for Real-Time 3D Object Detection in Point Clouds)

  • 김규민;백중환;김희영
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1330-1339
    • /
    • 2022
  • 3D 물체검출은 대체로 자동차, 버스, 사람, 가구 등과 같은 비교적 크기가 큰 데이터를 검출하는 것을 목표로 두어 작은 객체 검출에는 취약하다. 또한, 임베디드 기기와 같은 자원이 제한적인 환경에서는 방대한 연산량 때문에 모델의 적용이 어렵다. 본 논문에서는 1개의 레이어만을 사용하여 로컬 특징에 중점을 두어 작은 객체 검출의 정확도를 높였으며, 제안한 사전 학습된 큰 네트워크에서 작은 네트워크로의 지식 증류법과 파라미터 크기에 따른 적응적 양자화를 통해 추론 속도를 향상시켰다. 제안 모델은 SUN RGB-D Val 와 자체 제작한 모형 사과나무 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 mAP@0.25에서 62.04%, mAP@0.5에서 47.1%의 정확도 성능을 보였으며, 추론 속도는 120.5 scenes per sec로 빠른 실시간 처리속도를 보였다.

PCA를 이용한 3차원 얼굴인식 모델에 관한 연구 : 모델 구조 비교연구 및 해석 (A Study On Three-dimensional Face Recognition Model Using PCA : Comparative Studies and Analysis of Model Architectures)

  • 박찬준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1373-1374
    • /
    • 2015
  • 본 논문은 복잡한 비선형 모델링 방법인 다항식 기반 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)와 벡터공간에서 임의의 비선형 경계를 찾아 두 개의 집합을 분류하는 방법으로 주어진 조건하에서 수학적으로 최적의 해를 찾는 SVM(Support Vector Machine)를 사용하여 3차원 얼굴인식 모델을 설계하고 두 모델의 3차원 얼굴 인식률을 비교한다. 3D스캐너를 통해 3차원 얼굴형상을 획득하고 획득한 영상을 전처리 과정에서 포인트 클라우드 정합과 포즈보상을 수행한다. 포즈보상 통해 정면으로 재배치한 영상을 Multiple Point Signature기법을 이용하여 얼굴의 깊이 데이터를 추출한다. 추출된 깊이 데이터를 RBFNN과 SVM의 입력패턴과 출력으로 선정하여 모델을 설계한다. 각 모델의 효율적인 학습을 위해 PCA 알고리즘을 이용하여 고차원의 패턴을 축소하여 모델을 설계하고 인식 성능을 비교 및 확인한다.

  • PDF

Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Junhyuk Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.21-30
    • /
    • 2024
  • 본 논문에서는 자율협력주행 인프라를 위해 제작된 8가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하여 샘플 데이터셋으로 구축하는 방법을 제안한다. 고휘도 반사지가 부착된 8가지 센서 전용 시설물들과 데이터 취득 시스템을 개발했고, 취득된 포인트 클라우드 데이터로부터 일정한 측정 거리 내에 위치한 시설물들의 특징을 추출하기 위해 포인트 대상의 DBSCAN 방법과 반사강도 대상의 OTSU 방법을 응용하여 추려낸 포인트들에 원통형 투영법을 적용했다. 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도 등을 해당 시설물의 특징으로 설정했고, 정답 레이블과 함께 데이터셋으로 제작했다. 라이다로 취득한 데이터를 기반으로 구축된 시설물 데이터셋의 효용 가능성을 확인하기 위해서 기본적인 CNN 모델을 선정하여 학습 후 테스트를 진행하여 대략 90% 이상의 정확도를 보여 시설물 인식 가능성을 확인했다. 지속적인 실험을 통해 제시한 데이터셋 구축을 위한 특징 추출 알고리즘의 개선 및 성능 향상과 더불어 이에 적합한 자율협력주행을 위한 센서 전용 시설물을 인식할 수 있는 전용 모델을 개발할 예정이다.

춤추는 아바타: 당신도 싸이처럼 춤을 출 수 있다. (Dancing Avatar: You can dance like PSY too)

  • 구동준;주영돈;브이 반 만;이정우;안희준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.256-259
    • /
    • 2021
  • 본 논문에서는 사람을 키넥트로 촬영하여 3 차원 아바타로 복원하여 연예인처럼 춤을 추게 하는 기술을 설계 구현하였다. 기존의 순수 딥러닝 기반 방식과 달리 본 기술은 3 차원 인체 모델을 사용하여 안정적이고 자유로운 결과를 얻을 수 있다. 우선 인체 모델의 기하학적 정보는 3 차원 조인트를 사용하여 추정하고 DensePose를 통하여 정교한 텍스쳐를 복원한다. 여기에 3 차원 포인트-클라우드와 ICP 매칭 기법을 사용하여 의상 모델 정보를 복원한다. 이렇게 확보한 신체 모델과 의상 모델을 사용한 아바타는 신체 모델의 rigged 특성을 그대로 유지함으로써 애니메이션에 적합하여 PSY 의 <강남스타일>과 같은 춤을 자연스럽게 표현하였다. 개선할 점으로 인체와 의류 부분의 좀 더 정확한 분할과 분할과정에서 발생할 수 있는 노이즈의 제거 등을 확인되었다.

  • PDF

랜덤포레스트와 서포트벡터머신 기법을 적용한 포인트 클라우드와 실감정사영상을 이용한 객체분류 (Object Classification Using Point Cloud and True Ortho-image by Applying Random Forest and Support Vector Machine Techniques)

  • 서홍덕;김의명
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.405-416
    • /
    • 2019
  • 정보통신기술의 발달로 인하여 데이터의 생산과 처리 속도가 빨라지고 있다. 인공지능의 한 분야인 머신러닝을 이용하여 객체를 분류하기 위해, 학습에 필요한 데이터는 인터넷과 공간정보기술의 발달로 인하여 손쉽게 수집할 수 있게 되었다. 공간정보 분야에서도 머신러닝은 영상, 포인트 클라우드 등을 이용하여 객체를 분류 또는 인식하는 것에 적용되고 있다. 본 연구에서는 기 구축된 수치지도 버전 1.0을 활용하여 학습 데이터를 수동으로 구축하는 문제점을 개선하고 영상과 포인트 클라우드를 이용하여 도로, 건물, 식생을 분류하는 기법을 제안하였다. 실험을 통해서 RGB 밴드만을 갖고 있는 실감정사영상을 사용하였을 경우 색상을 뚜렷하게 구분할 수 있는 도로, 건물, 식생의 분류가 가능하였지만 색상이 유사한 경우에는 분류가 잘 되지 않는 한계를 확인할 수 있었다. 이를 개선하기 위해 실감정사영상과 정규수치표면모델을 밴드 퓨전한 후 랜덤포레스트와 서포트벡터머신 기법을 적용하였으며 이를 통해 85%이상의 정확도로 도로, 건물, 식생을 분류하였다.

무인항공 경사사진을 이용한 3차원 모델 생성 및 정확도 평가 (3D Model Generation and Accuracy Evaluation using Unmanned Aerial Oblique Image)

  • 박준규;정갑용
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.587-593
    • /
    • 2019
  • 공간정보 관련 분야는 위치정보를 취득할 수 있는 센서 및 자료처리 기술의 발달로 빠른 속도로 변화하고 있으며, 이와 연관된 각종 산업과 사회적 활동에서 수요가 커지고 있는 실정이다. 누구나 보기 쉽고 이해가 빠른 3차원 공간정보의 구축과 활용은 관련 서비스의 품질과 신뢰도 향상에 필수적인 요소라 할 수 있다. 최근에는 3차원 공간정보 구축 기술로 3D 레이저 스캐너가 많이 활용되고 있지만 3D 레이저 스캐너는 대상물의 규모가 크거나 형상이 복잡한 경우, 데이터 취득이 되지 않는 음영지역이 발생할 수 있으며, 장비의 이동 및 설치 횟수가 많아질수록 작업의 효율이 떨어지는 단점이 있다. 이에 본 연구에서는 무인항공기를 이용하여 경사사진을 취득하고, 자료처리를 통해 대상물의 3차원 모델을 생성하고자 하였다. 연구대상지를 선정하고, 무인항공기를 이용해 경사사진을 취득하였으며, 자료처리를 통해 0.02m의 간격을 가지는 포인트클라우드 형태의 3D 모델을 생성하였다. 3D 모델의 정확도 평가 결과는 최대 0.19m, 평균 0.11m로 나타났으며, 축 방향에 따른 편차의 경향성은 나타나지 않았다. 향후, 촬영 및 자료처리 방법에 따른 정확도 평가와 카메라 종류에 따른 3D 모델 구축과 정확도 평가 및 분석이 이루어진다면 3D 모델의 정확도를 개선할 수 있을 것이며, 포인트클라우드 형태의 3D 모델은 거리 및 면적의 측정, 단면 생성, 대상물의 도면화 등 다양한 활용이 가능하여 공간정보 서비스 및 관련 업무의 작업 효율성을 향상시킬 수 있을 것이다.

토공 BIM 설계 효율화를 위한 포인트 클라우드 데이터 처리 프로그램 개선에 관한 연구 (The Improvement of Point Cloud Data Processing Program For Efficient Earthwork BIM Design)

  • 김희연;김정환;서종원;심호
    • 한국건설관리학회논문집
    • /
    • 제21권5호
    • /
    • pp.55-63
    • /
    • 2020
  • 토공 자동화는 건설 산업에서 유망한 기술로 주목받고 있으며, 토공 자동화 기술의 적용은 건설 현장의 포인트 클라우드 데이터(Point Cloud Data, PCD) 취득 및 처리로부터 시작된다. PCD는 광범위한 건설 현장의 특성상 백만 개 이상의 많은 데이터를 가지며, 이에 대한 원데이터의 처리 속도는 디지털 지형 모델(Digital Terrain Model, DTM) 생성 및 공사의 효율성 증가에 매우 중요한 요소이다. 현재 국내 설계기준에 적합한 PCD 처리 및 BIM 설계 통합 프로그램인 벤치마크 프로그램(Benchmark Program, BP)이 존재하지만, 사용자의 편의성과 효율성을 위한 수정과 개선이 필요한 상황이다. 본 연구에서는 BP의 기존 PCD 처리 기능을 유지하며, PCD 파일의 호환성에 대한 확장 및 컴파일(Compile) 기반 개발 환경, OpenGL의 활용 및 UI/UX 디자인을 이용한 개선 프로그램을 개발하였다. 개발된 프로그램에 다양한 크기의 PCD를 로드 했을 때, 기존 프로그램과 비교하여 92~99%의 속도 향상이 있었다. 이 프로그램은 추후 PCD와 토공 BIM 기능을 통합하여 설계와 시공 사이의 간극을 줄이는 프로그램 개발의 기반이 될 수 있고, 나아가 토공 생산성 향상에 기여할 것으로 기대된다.