• Title/Summary/Keyword: 포신 강선

Search Result 2, Processing Time 0.015 seconds

Numerical Simulation of a Gun-launched Projectile Considering Rifled-gun Tube (포신의 강선을 고려한 포 발사 해석)

  • Joo, Geunsu;Huh, Hoon;Jung, Yeong Hyuk;Kim, Ju Yeong;Seo, Songwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.877-885
    • /
    • 2017
  • This paper is concerned with numerical simulation of a gun-launched projectile considering a rifled gun-tube. Gun-launched conditions induce dynamic behaviors, such as high pressure and high speed rotation. A projectile and its internal electronic components may be damaged in such harsh environments. Hence, it is necessary to perform numerical simulation of a gun-launched projectile to predict its dynamic behaviors and stability. In this work, preceding research studies on gun-launched projectiles are investigated, and the simulation method is developed to rotate the projectile through between its rotating band and a rifled-gun tube. The proposed method is verified by comparison with experimental results, and the dynamic behaviors and stability of the projectile are evaluated under gun-launched conditions.

MEMS Capacitive Gap Sensor for Measuring Abrasion Depth of Gun Barrel Rifling (포신 강선의 마모 깊이 측정을 위한 정전용량 방식의 MEMS 간극센서)

  • Lee, Seok-Chan;Lee, Seung-Seob;Lee, Chang-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.976-981
    • /
    • 2009
  • MEMS capacitive gap sensor is developed for measuring abrasion depth of gun barrel rifling. Measuring abrasion depth of gun barrel rifling is very important because it is related with exactness of firing and life of arms. The method using a gap sensor is not to hurt rifling. And it can measure abrasion depth through minimum shooting, because the developed gap sensor can measure from $1{\mu}m{\sim}12{\mu}m$ using Polydimethylsiloxane(PDMS) material and making a stretchable electrode on PDMS. And it's resolution is 1 ${\mu}m$ using capacitive method and MEMS technology.