• Title/Summary/Keyword: 포말부선

Search Result 3, Processing Time 0.014 seconds

Removal of Cobalt Ions by Precipitate Foam Flotation (침전 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.11-16
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was t$\xi$sted by precipitate flotation using a sodium lauryl sulfate as a c collector. The effects of initial cobalt ion concentration, pH, surfactant concentration, flotation time, gas flow rate and foreign i ions on removal efficiency of cobalt ion were studied. Pretreatment of the waste liquid with 35% $H_2O_2$, prior to precipitate f flotation made shin of optimal flotation pH from the strong alkalinity to weak alkaline range and made a favorable flotation of c cobalt ion in wide range of pH. For the result of this experiment, 99.8% removal efficiency was obtained on the conditions of initial coball ion concentration 50 ppm, pH 9.5 gas flow rate 70 mllmin, flotation time 30 min. The simulate ion was fanned t to be the most harmful ion against removal of cobalt by precipitate flotation of the species which were tested The presence of 0.1 M of $SO_4^{2-}$ ion decreased remo,때 $\xi$폐iciency of cobalt to 90% while the cobalt were almost entirely removed in the a absence of sulfate ion.

  • PDF

Selective Removal of Arsenic Compounds from the Contaminated Paddy Soil in China Using Froth Flotation Technique (포말부선 기술을 이용한 중국 오염농경지내 비소화합물의 선택적 제거)

  • Lee, Seungwoo;Jeon, Chilsung;Lee, Eunseong;Yoo, Kyungmin;Choi, Junhyun;Kim, Hyunjung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.343-352
    • /
    • 2016
  • Effects of grinding time and chemicals dosage in arsenic removal from contaminated paddy soil in China were investigated using lab scale attrition and froth flotation combining process. Arsenic concentration in the field soil was 76.51 mg/kg, exceeding Korean and Chinese standards, and predominant arsenic compounds fraction in sequential extraction was "residual" (over 80%). After wet sieving, soil with >2 mm and < 0.038 mm showed concentration lower than 'Warning Level' in Korea. Soil with 0.038-0.075 mm, showing the highest concentration, was discarded since it occupied minor weight fraction (10.1%). Thus soil between 0.075 and 2 mm was only used in the combining process. The highest Arsenic concentration in progeny fragments smaller than 0.038 mm reached up to 981.66 mg/kg after 5 min of attrition. Optimal dosage of collector ($C_5H_{11}OCS_2K$) and modifier ($Na_2S$ and $CuSO_4$) in froth flotation process for the selective separation of the chipped progeny particles from the parent fragments were determined both as 200 g/ton. Arsenic removal efficiency in froth flotation process was 38.47% and it was increased to 72.74% in additional flotation process, scavenging. Average arsenic concentration after overall process - wet sieving, attrition and froth flotation - was estimated to 16.45 mg/kg.

Removal of Cobalt Ion by adsorbing Colloidal Flotation (흡착 교질 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was treated by adsorbing colloidal flotation using Fe(III) or Al(IlI) as flocclant and a sodium lamyl sulfate as a collector. Parameters such as pH, surfactant concentration, Fe(III) or Al(III) concentration, gas flow rate, etc., W앙e considered. The flotation with Fe(III) showed 99.8% removal efficiency of cohalt on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, and flotation time 30 min. When the waste solution, was treated with 35% $H_2O_2$ prior to adsorbing colloidal flotation, the optimal pH for removing cobalt shifted m to weak alkaline range and flotation could be applied in wider range of pH as compared to non-use of $H_2O_2$. Additional use of 20 ppm Al(III) after precipitation of 50 ppm Co(II) with 50 ppm Fe(III) made the optimal pH range for preferable flotation w wider. Foreign ions such as, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $Ca^{2+}$ were adopted and their effects were observed. Of which sulfate ion was f found to be detrimental to removal of cob퍼t ion by flotation. Coprecipitation of Co ion with Fe(III) and Al(III) resulted in b better removal efficiency of cobalt IOn 피 the presence of sulfate ion.

  • PDF