• Title/Summary/Keyword: 포러스 콘크리트

Search Result 68, Processing Time 0.025 seconds

A Study on Strength and Permeability of Cooper Slag mixed Porous Concrete (동제련 슬래그를 혼입한 포러스 콘크리트의 강도 및 투수성능에 관한 연구)

  • Shim, Byung-Ju;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.69-72
    • /
    • 2011
  • The purpose of this study is to identify basic property of porous concrete using cooper slag as fine aggregate. The specimens were made with cooper slag with various mixing ratio(10, 20, 30, 50%), porous concrete and porous concrete containing river fine aggregate and crushed fine aggregate, which W/B ratio fixed 0.25. Compressive strength, Flexural strength, coefficient of permeability. From the test results, various fine aggregate mixing ratio improves compressive strength and flexural strength, but cooper slag fine aggregate mixing ratio over 20%, concrete indicates trend to decrease performance of permeability. Concrete containing fine aggregate is improved the performance of permeability and strength compared to other specimen, when age 28days, and cooper slag mixing ratio less than 20% concrete indicates better performance than cooper slag mixing ratio 20% over.

  • PDF

Properties of Porous Concrete with Pressurized Compaction Method (가압다짐에 의한 포러스콘크리트의 특성에 관한 연구)

  • Cho, Sung-Bae;Kim, Hee-Cheul;Kwak, Byung-Hu;Ng, Ninh-Thuy;Kwon, Hyug-Moon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.656-659
    • /
    • 2004
  • In this research, the properties of porous concrete by pressurized compaction, such as compressive strength, coefficient of permeability, void ratio of the porous concrete are measured. These results suggest the fundamental data of porous concrete properties.

  • PDF

An Experimental Study on the Development of Functional Porous Concrete for Artificial Reef (인공어초용 기능성 포러스 콘크리트 개발에 관한 실험적 연구)

  • Choi, Sung-Ha;Kim, Myung-Yu;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.869-872
    • /
    • 2006
  • By this time, various shapes and materials are used in Artificial Reef. A function of Artificial Reef is leading of fishes by adhesion of seaweeds, however, this effect was not enough. In this study, porous concrete containing function materials (protein, carbohydrates, and fat etc.) are investigated to maximize leading effect of fishes. For these, the mechanical characteristics of porous concrete are investigated with void contents and function materials. Also, the diffusion of function materials are compared to suggest the suitable content of functional material.

  • PDF

Planting-Ability Properties of Porous Concrete as Gradation and Void Ratio (포러스콘크리트의 골재입도 및 공극률에 따른 식생능력평가)

  • 윤덕열;김정환;조영수;표구영;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.243-248
    • /
    • 2002
  • As a notion of environment protection changes throughout the world, construction engineers, as part of the effort to resolve environmental problems, have been actively doing research on environmental friendly porous concrete using large and non-uniform aggregate. Porous Concrete enables water and air to pass through a firmly hardened material and allows required nutrients to reach roots of plants. The purpose of this study is to analyze planting ability when the change of aggregate gradation and void ratio. The results of an experiment from the planting ability of the porous concrete to its influence on the compressive strength are reported in this paper. As a result of the experiment, the compressive strength is higher when the gradation of aggregate is smaller, and it also goes higher when the void ratio gets smaller The planting ability of porous concrete is decided by the germination and the grass length of Indigofera pseudo-tinctoria(IPT). The length of IPT is longer when the gradation of aggregate is greater and the void ratio gets smaller.

  • PDF

An Experimental Study on the Fundamental Properties of Porous Concrete by Paste Flow, Compaction Time and Compaction Thickness (페이스트플로우, 진동다짐시간 및 다짐두께에 따른 포러스콘크리트의 기초물성에 관한 실험적 연구)

  • 이성일;이종호;김재환;최세진;백용관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.91-96
    • /
    • 2002
  • This study is to analyze the influence of paste flow, compaction time and compaction thickness on the fundamental properties of porous concrete. Results of this study were shown as follows; 1) As paste flow increase, compaction time according to paste flow and compaction thickness decrease. Also, though paste flow is same, as compaction thickness increase, compaction time Increase. So It must be considered that the influence of compaction time according to paste flow and compaction thickness. 2) In the range of this study, compressive strength is the highest value at paste flow 190mm. 3) Occasion of manufactured compactor in this study compaction thickness 10, 15cm is influenced heavily but compaction thickness 20cm is influenced slightly.

  • PDF

An Experimental Study on The Strength Elevation of Porous Concrete according to the Mixing Proportion (배합요인에 따른 포러스콘크리트의 강도향상에 관한 실험적 연구)

  • 백용관;김재환;반성수;박선규;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.255-258
    • /
    • 1999
  • In recent years, the study on the porous concrete which has excellent permeability is actively advanced in the field of architectural and civil engineering. But porous concrete has a reciprocal concept in the aspect of comparative large and continuos void structure and reduction of void for insurance of the necessary strength on the mixing proportion, must have satisfied of the properties of these. Therefore this study is series of experiment for the strength elevation and evaluated the effect according to fine replacement ratio and levels of cement content. As a result, the strength of porous concrete was elevated by an increase of fine replacement ratio and cement content.

  • PDF