• Title/Summary/Keyword: 포놀라이트질

Search Result 6, Processing Time 0.02 seconds

Mineralchemie der Klinopyroxen vom tephritischen Gesteine im Kaiserstuhl, BRD (카이져슈튤에서 산출되는 테프라이트질 화산암내의 단사휘석에 관한 광물화학적 고찰)

  • Kim, Jin-Seop;Keller, Jorg
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.100-106
    • /
    • 1989
  • Die Titan-Augite sind die dominierenden Einsprenglings- und Grundmassephasen in allen tephritischen Gesteinen im Kaiserstuhl. Mg-Werte ($Mg/Mg+Fe^{2+}+Mn$) der Pyroxene schwanken von 60-85. Der FATS- und TITS-Anteil nimmt von phonolithischem Basanit und -Tephrit zum fraktionierten phonolithischen Tephrit hin ab. Die Kpx der einzelnen Gesteinsgruppen zeigen auch einen Fraktionier-ungstrend, der durch Abnahme von Si und Zunahme von Al vom phonolithischen Basanit und -Tephrit zum fraktionierten phonolithischen Tephrit gekennzeichnet ist. Der in Alkaligesteinen gewohnlich auftretende $gr{\ddot{u}}ne$ Kern der Px ist Fe-reicher und $Ti-{\ddot{a}}rmer$ als der $hellbra{\ddot{u}}nliche$-farblose Rand. Die $gr{\ddot{u}}nen$ Kerne weisen $gegen{\ddot{u}}ber$ den $hellbr{\ddot{a}}unlichen$ Randern $h{\ddot{o}}here$ $Na/Fe^{+3}$-Verhaltnisse auf.

  • PDF

Magmatic Evolutions based on Compositional Variations with Time in the Maljandeung Tuff, Ulleung Island, Korea (울릉도 말잔등응회암에서 시간에 따른 조성변화에 근거한 마그마 진화)

  • Hwang, Sang Koo;Lee, So-Jin;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.111-128
    • /
    • 2019
  • Ulleung Island is the top of an intraplate alkalic volcano rising 3200 m from sea floor in the East Sea (or Sea of Japan). The emergent 984.6 m consist of eruptive products of basaltic, trachytic and phonolitic magmas, which are divided into Dodong Basaltic Rocks, and Ulleung, Seonginbong and Nari groups. The Maljandeung Tuff in the Nari Group consists of thick pyroclastic sequences which are subdivided into 4 members (N-5, U-4, 3, 2), generating from explosive eruptions during past 18.8~5.6 ka B.P. From chemical data, the Member N-5, phonolitic in composition, is considerably enriched in incompatible elements and REE patterns with significant negative Eu anomalies. The members 4, 3 and 2 are phonolitic to tephriphonolitic in composition, and their REE patterns do not have significant Eu anomalies. In variation trend diagrams, many elements show abrupt compositional gaps between members, and gradual upward-mafic variations from phonolite to tephriphonolite within each member. It suggests a downward-mafic zonation that were evolved into phonolitic zone in the lower part to tephriphonolitic zone in upper part of magma chamber. It is supposed that the chemical stratification generated from multiple mechanisms of thermal gravidiffusion, crystal fractionation, and gradual melting and sequential emplacement. The stratified magmas were explosively erupted to generate a small caldera during short period (11 ka B.P.). Especially both members (U-3, 2) were accumulated by gradually erupting from the upper phonoltic zone to the lower tephriphonoltic zone of the stratified chamber in 8.4 ka B.P. and 5.6 ka B.P. time, respectively.

Eruptive History of the Ulleungdo-Dokdo Volcanic Group, the East Sea: a Multi-Scale Approach (동해 울릉도-독도 화산그룹 분화사 다중스케일 연구)

  • Kim, Gi-Bom;Lee, Jae-Hyuk;Ahn, Ho-Jun;Je, Yoon-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.140-150
    • /
    • 2022
  • This paper focuses on introducing the concept of the multi-scale study on the Ulleungdo-Dokdo Volcanic Group in the East Sea and recent new findings from it. Multi-channel seismic reflection data reveals that the major volcanic activities of the Ulleungdo-Dokdo Volcanic Group took place between 5 and 2.5 Ma, which were propagated from Isabu Tablemount on the eastern end to the Ulleung Island on the western end. The terrestrial Ulleung Island was built via 5 stages, which eventually formed a 3 km-wide caldera, named Nari Caldera, and a volcanic dome, named Albong, within the caldera. The Albong and the unit N-1, the earliest phreatomagmatic explosive phase of the Albong volcano, were generated from a new magma injected into the existing phonolitic body. The generally trachyandesitic bulk rock composition of the pumice in unit N-1 and Albong is attributed to the contamination of the new magma by mafic cumulates at the base of the existing phonolitic chamber. The lines of evidence of a new magma injection point toward that Ulleung Island is an active volcano with a live subvolcanic magma plumbing system.

Evaluation of Volcanic Processes and Possible Eruption Types in Ulleung Island (울릉도에서의 화산과정과 발생 가능한 분출유형의 평가)

  • Hwang, Sang Koo;Jeong, Seong Wook;Ryu, Han Young;Son, Young Woo;Kwon, Tae Ho
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.715-727
    • /
    • 2020
  • Volcanostratigraphy in Ulleung Island is divided into 4 stratigraphic groups: Dodong Basaltic Rocks, Ulleung Group, Seonginbong Group and NariGroup. The main pyroclastics in them includes lapilli tuff intercalated within the Dodong Basaltic Rocks, lapilli tuff at the top of Sadong Breccia, Sataegam Tuff, Gombawi Welded Tuff, Bongrae Scoria Deposits, Maljandeung Tuff, Nari Scoria Deposits and Jugam Scoria Deposits. Analysing eruption types, The lapilli tuff in the Dodong Basaltic Rocks is derived from Surtseyan eruption, and the Bongrae, Nari and Jugam Scoria Deposits are caused by Strombolian eruptions or/and sub-Plinion eruptions, but the Sataegam Tuff and Maljandeung Tuff are derived from Plinian and phreatoplinian eruptions. Among them the large-scaled eruptions. In particular, the eruptions of Maljandeung were large enough to result in caldera collapse, and had falled out tephras to the eastern Korean peninsula but even Japan Islands. The magma with high potential to be still alive is judged to be trachyandesitic and phonolitic in composition. If the trachyandesitic magma explodes, it will probably result in a strombolian eruption and have a fairly low explosivity, but if the phonolitic magma explodes, it will probably result in a plinian eruption and have a much higher explosivity. If the eruption had a high explosivity, there is a possibility that it could easily be converted into a phreatoplinian eruption due to the influx of groundwater by the easy generation of fractures. These large-scaled eruptions could fall out tephras to the eastern Korean peninsula but even Japan Islands.

Petrological and Mineralogical Characteristics of Matrix of Pumice in Ulleung Island (울릉도 부석 기질의 암석.광물학적 특성)

  • Im, Ji-Hyeon;Choo, Chang-Oh;Jang, Yun-Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.151-164
    • /
    • 2011
  • Mineralogical and petrological characteristics were investigated on matrix of dense gray, vesiculate gray, brown and black pumice in Ulleung Island by using XRD, FT-IR, XRF, SEM and thermal analysis. According to the analysis, most of pumice matrix are amorphous and include very small amount of sanidine and anorthoclase. Since the adsorption moistures, which commonly observed as O-H peak in FT-IR spectrum, are not identified in thermal analysis, it seems reasonable to conclude that content of the adsorption moisture has very low level. Although pumice has a large specific surface area, with long time elapsed after eruption, pumice matrix shows very low degree of hydration alteration due to the low level of water content. In SEM images, most surfaces of pumice show morphological characteristics such as various shapes of vesicle with wrinkled and thin walls resulted from ductile coalescence. Dense gray pumice formed in the initial stage includes small vesicles less than $15{\mu}m$ in size with subangular to angular shapes, free of ovoid vesicle. These characteristics are interpreted to have related to the hydrous environment derived from phreato-plinian eruption. Submicron particles observed as amorphous alumina silicate assemblages in vesicle surface are considered as particles sticked to the matrix surface through rapidly cooling process during ascent of alkali phonolitic magma. It indicates that these particles coexisted partly with crystallized alkali feldspar.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.