• Title/Summary/Keyword: 포그냉방시스템

Search Result 24, Processing Time 0.018 seconds

Cooling Efficiency of Low Pressure Compressed Air Fogging System in Naturally Ventilated Greenhouses (저압 에어포그 시스템을 설치한 온실의 냉방효율)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo;Ko, Gi-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • In order to derive the efficient utilization of low pressure compressed air fogging system, cooling efficiencies with control types were analyzed through cooling experiments in tomato greenhouses. The control types were set up with temperature control, humidity control, temperature and humidity control, and time control. It showed that the cooling effects were 0.7 to $3.3^{\circ}C$ on average and maximum of 4.3 to $7.0^{\circ}C$, the humidification effects were 3.5 to 13.5 % on average and maximum of 14.3 to 24.4 %. Both the cooling and humidification effect were the highest in the time control method. The cooling efficiency of the air fogging system was not high with 8.3 to 27.3 % on average. However, the cooling efficiency of 24.6 to 27.3 % which appears from the time control is similar to the cooling efficiency of high pressure fogging system experimented in Japan. The air fogging system is operated by low pressure, but its efficiency is similar to high pressure. We think because it uses compressed air. From this point of view, we suggest that the air fogging system can get the cooling efficiency of similar levels to that of high pressure fogging system and it will have an advantage from clogging problem of nozzle etc.

The Actual State of Heat Conservation, Heating and Cooling in Greenhouses (온실의 보온 및 냉난방실태 분석)

  • 김문기;이석건;서원명;남상운;김란숙
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.05a
    • /
    • pp.39-44
    • /
    • 1998
  • 현재 국내에 보급되어 있는 현대화 온실 203개를 대상으로 냉난방과 관련된 설비현황을 조사하여 분석한 결과를 요약하면 다음과 같다. \circled1 온실의 건설방위는 남북동(58.1%)과 동서동(26.8%)이 대부분이었고, 철골온실은 Wide-span형이 81.8%, 플라스틱온실은 1-2W형 온실이 97.5%였다. 휴작하는 온실은 약 41%정도였고, 재배작물은 채소류가 약 80%, 화훼류가 약 20%정도였으며, 재배방식은 철골온실의 경우 양액재배가 57.2%, 플라스틱온실에서는 토양재배가 88.5%였다. \circled2 온실의 외부 피복재는 철골온실은 유리가 92.2%, 플라스틱온실에서는 PE가 43.3%, EVA가 51.9%로 대부분이었다. 철골온실은 1중피복이 98.7%로 거의 전부이었고, 플라스틱온실에서는 2중피복이 78.7%로 나타나, 철골온실에서 보온커튼을 통한 보온성 향상과 밀폐성이 더욱 중요함을 알 수 있다. \circled3 보온용 피복재는 부직포가 64.9%로 가장 많았고 대부분 2층커튼(85.9%)이었으며, 개폐방식은 대부분 예인식(92.7%)의 자동개폐방식(75.2%)이었다. 한편 바닥을 피복한 온실은 약 30% 정도로 나타나, 바닥피복으로 인한 축열이나 반사효과를 감안할 때 효율적인 바닥처리가 요망된다. \circled4 온실의 난방방식은 철골온실에서는 온수안방(47.3%)이 온풍난방(33.8%)보다 다소 많았으며, 플라스틱온실에서는 대부분 온풍난방(90.8%)이었다. 온실의 난방위치는 대부분 지상난방(89.8%)이었고 지중난방은 극소수로 나타나, 앞으로 지중난방을 통한 난방비 절감과 품질향상에 관한 실용화 연구가 요망된다. 난방용 연료는 대부분 경유(83.9%)로 나타나, 난방비를 절감할 수 있는 저가의 연료를 사용할 수 있는 난방시스템의 개발이 요청된다. \circled5 온실의 냉방방법은 차광(51.8%)과 지붕살수(33.9%)가 대부분이었으며 미스트와 포그시스템을 설치한 온실은 소수에 불과하였고, 극소수의 온실에서는 지붕위나 온실내에 지붕면과 평행하게 설치한 경우도 있었다.

  • PDF

A Study on the Control of the Temperature and Relative Humidity in Greenhouse by Adjusting the Amount of Natural Ventilation and Fog Spray Quantity (자연환기량과 포그분무량 조절에 의한 온실 온습도의 동시제어 기법 연구)

  • Kim, Youngbok;Sung, Hyunsoo;Hwang, Seungjae;Kim, Hyeontae;Ryu, Chanseok
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.31-50
    • /
    • 2016
  • To develope a greenhouse fog cooling system to control the temperature and relative humidity simultaneously to the target value, a theoretical analysis and experiments were done. The control process includes the measuring of environmental variables, setting and coding of the water and heat balance equations to maintain the target temperature and relative humidity in greenhouse, calculating of the open level of the greenhouse roof window that governs the natural ventilation and spray water quantity, and operating of the motor to open/close the roof window and pump to spray for water. The study results were shown to be very good because the average air temperature in the greenhouse was kept to be about $28.2^{\circ}C$ with the standard deviation of about $0.37^{\circ}C$ compared to the target temperature of $28^{\circ}C$ and the average relative humidity was about 75.2% compared to the target relative humidity was 75% during the experiments. The average outside relative humidity was about 41.0% and the average outside temperature was $27.2^{\circ}C$ with the standard deviation of about $0.54^{\circ}C$. The average solar intensity in the greenhouse was 712.9 W. The wind velocity of outside greenhouse was 0.558 m/s with the standard deviation of 0.46 m/s.

Spray Characteristics of Spray Nozzles Used for Greenhouse Cooling (온실 냉방용 분무노즐의 분무 특성)

  • 서원명;이종열;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.298-310
    • /
    • 1998
  • This research was carried out to find out spray characteristics of 3 types of spray nozzle to be used for greenhouse cooling. Following results were obtained from this experimental study. Water amounts sprayed with each nozzle were increased with the spraying pressure. However the increment of sprayed amount with the increase of spraying pressure were not consistent regardless of nozzle types. For the whole tested spraying pressures of nozzle-type I, II, III, the minimum droplet sizes were about 1.7~2.5$\mu$m, 1.7~2.2$\mu$m and 1.7~2.2$\mu$m, respectively, and the maximum droplet sizes were about 44~60$\mu$m, 52~71$\mu$m and 45~61$\mu$m, respectively, and the average droplet sizes were about 23~38$\mu$m, 19~24$\mu$m and 17~25$\mu$m, respectively The most appropriate spraying pressures of nozzle-type I, II, III were analyzed to be 70kgf/$\textrm{cm}^2$, 30kgf/$\textrm{cm}^2$ and 30kgf/$\textrm{cm}^2$, respectively, and their sprayed amounts were about 124mL/min, 103mL/min and 84mL/min, respectively, and average droplet sizes were 22.6$\mu$m, 21.8$\mu$m and 20.6$\mu$m, respectively. Also, with the order of nozzle-type I, II, III, droplet size distributions less than 30$\mu$m were 95.4%, 85.7% and 79.0%, respectively, and the distributions larger than 40$\mu$m were 0.2%, 1.28% and 1.67%, respectively. However most all of the droplet size were less than 50$\mu$m.

  • PDF