• Title/Summary/Keyword: 폐자동차 해체

Search Result 22, Processing Time 0.034 seconds

A Study on End-of-Life Vehicle Reverse Supply Chain Policy in Korea (한국의 자동차 Reverse Supply Chain의 효율적 운영을 위한 정책에 관한 연구)

  • Kim Hae-Jung;Kim Ji-Yeon;Park Jin-U
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1303-1308
    • /
    • 2006
  • 지금까지 제조업체는 생산 및 물류 시스템의 효율성 증대를 통한 제품판매 증가에만 주의를 기울여왔다. 그러나 환경에 대한 관심이 높아지고, 관련 법규가 엄격해지면서 폐기물 처리와 재활용이 기업의 생존을 위한 중요한 과제로 떠오르고 있다. 자동차 제조업계에서 역시 폐자동차 재사용 및 재활용에 대한 연구가 진행되고 있으나, 한국에서는 자동차 산업의 외형적 성장과는 달리 이에 대한 시스템 구축이 미비한 상태이다. 본 연구에서는 폐자동차의 재활용에 관한 외국의 사례를 조사하고, 폐자동차의 회수 및 해체 촉진을 위한 바람직한 정부 정책 모델을 제시하려 한다.

  • PDF

A Study on the Economic Evaluation of the Recycling of End-of-Life Vehicles (폐(廢) 자동차(自動車) 재활용(再活用) 과정의 경제성(經濟性) 평가(評價)에 관한 연구(硏究))

  • Baek, Mi-Hwa;Ahn, Hye-Seong;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.62-68
    • /
    • 2009
  • Number of vehicles in Korea is gradually increasing and it exceeded 16 million in 2007. Holding of vehicles is connected to disposal, owing to this reason the importance of ELVs recycling has been emphasized. The recycling of ELVs makes the disposal of ELVs easier as well as protects environment and it has the alternative effect economizing the insufficient resource. This study was carried out to evaluate the economic effect of recycling of ELVs compared with disposal of ELVs. The analysis showed that recycling process makes a profit in comparison to the disposal of ELVs. Therefore the government has to consider establishing the regulation related to recycling of ELVs or materials and car manufactures have to develop the efficient dismantling and recycling methods.

The Development of Material Separation Technique for Recycling of Waste Car Tail Lamp (폐자동차(廢自動車) Tail Lamp의 재활용(再活用)을 위한 재질분리(材質分離) 기술개발(技術開發))

  • Jeon, Ho-Seok;Park, Chul-Hyun;Baek, Sang-Ho;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.25-32
    • /
    • 2006
  • In this study, waste car tau lamps that usually gets incinerated or buried has been recovered during the dispose process in order to increase the recycling rate of waste cars and the material separation research was performed by applying triboelectrostatic separation method. After a series of charging characteristic test, PMMA materials was confirmed of being an effective charging material for waste car tail lamp material separation, a cyclone charger using PMMA material for continuous process was developed. In optimum test conditions using triboelectrostatic separator developed in this study, high quality PMMA material with recovery rate of 99.0% and 90.2% was achieved from the waste car tail lamp. Therefore, a material separation technology that can recycle tail lamps of waste cars has been established.

Technological Trends in the Automobile Recycling Technologies (폐자동차 재활용 기술의 동향)

  • 배영문;나도백;길상철;김정흠
    • Journal of Korea Technology Innovation Society
    • /
    • v.5 no.3
    • /
    • pp.367-381
    • /
    • 2002
  • This study deals with the technological trends in the automobile recycling technologies. It first discusses the importance and current situation of automobile recycling. And then it discusses the technological trends in automobile recycling industry classifying the technologies into three groups: disassemblying, recycling, and design. It deals with recycling of major parts of automobiles and the design of automobile for recyclability. This study also contains a patent analysis of the technologies. Different patterns in the trend of patents among various conn-tries are discussed with the context of legal and industrial situation of each country And finally it discusses the forecasting for the future technological and legislative trends.

  • PDF

End-of-Life Vehicle Rating Classification for Remanufacturing Core Collection (재제조 코어 회수를 위한 폐자동차 등급 분류)

  • Son, Woo Hyun;Li, Wen Hao;Mok, Hak Soo
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.11-23
    • /
    • 2018
  • The need for remanufacturing automotive parts is required due to the depletion of resources, rising raw material prices and strengthening environmental regulations. For remanufacturing, stable supply and demand of core must be accompanied. At present, remanufacturing companies collect cores through various routes, but the recovery rate of cores from the End-of-Life Vehicles is low. If we can systematically collect cores from hundreds of thousands of ELVs that were generated each year, the recovery rate of the core for remanufacturing will be further improved. Therefore, in this paper, we tried to establish a classification system for the ELV as a method for collecting the cores from the ELV. First, we selected the elements affecting the classification and determined the scope for the evaluation. The final rating classification is established by calculating the weights among the influence elements. Finally, through the case study, the dismantling grade of the actual ELV was evaluated to derive the second grade.

The Recycling of End-of-Life Vehicles(ELVs) in Taiwan

  • Tsai, Min-Shing;Chen, Wei-Sheng;Wu, Chung-Liu
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.6-15
    • /
    • 2005
  • The overall area of Taiwan is 36,006 km$^2$ and population was about 22,535,000 persons in 2003. The population density became 625persons/km$^2$. The economic of Taiwan progress since 1970. Gross national production in 2004 increased by 2.3 trillion or 493% relative to 1981. The number of automobiles in 1981 was 821,862, and increase to 6,389,186 in 2004. The number of motorcycles in 1981 were 4,591,547 and increase to 12,793,950 in 2004. The vehicle growth rate of automobile and motorcycle was 677% and 178% respectively. The recycling end-of-life vehicles(ELVs) is specified in the Waste Disposal Act. Its main content is the system of asking the vehicle manufacturer and importing agents, who are responsible for recycling of the ELVs. The recycling task on ELVs was startedinitially in 1993. It is required that the manufacturers and importing agents deposit certain ratios of Waste Vehicle Disposal Fees proportional to the number of vehicle they manufacture and import into Taiwan under sales. This report will introduce the current status of ELVs recycling in Taiwan, and the future direction, as well as measures proceeding for the EPA- Fund Management Committee(RMFC) operating in the fiture.

Application of Environmental Impacts to Seat Recycling of End-of-Life Vehicles (폐자동차 시트 재활용에 대한 환경성 평가)

  • Koo, Hee-Jun;Chung, Chan-Kyo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.159-163
    • /
    • 2006
  • 본 연구는 국제환경규제에 따라 폐자동차의 재활용율 향상을 위한 재활용 부품 우선순위를 도출하고, 폐시트 등 부품 재활용에 의한 환경성을 평가하기 위하여 폐차 해체시스템 전과정평가를 수행하였다. 연구결과 차피의 고철을 재활용 할 경우에는 지구온난화와 오존층파괴에 큰 환경이득을 얻을 수 있으나 폐시트를 폴리올 원료로 재활용할 경우에는 많은 자원의 사용으로 오히려 소각으로 인한 환경부하보다 지구온난화와 오존층파괴, 광화학산화물생성 등의 부하를 증가시키는 것으로 나타났다. 그러나 폐차의 95% 이상을 재활용 및 회수하기 위해서는 분해시간 및 시장성, 기술현황 등을 종합하여 고려하여야 하며 재활용이 곤란한 유리와 같은 다른 부품과 함께 시트의 물질재활용도 반드시 포함되어야 될 것으로 사료된다. 처리와 재활용에 따른 환경성을 비교한 결과 재활용이 필요한 부품은 시트와 유리가 가장 시급하며, 배터리, 혼합플라스틱도 재활용시 환경친화적 공정개발이 필요한 것으로 도출되었다.

  • PDF

Strategy and Development of Recycling Technology for End-of-Life Vehicles(ELVs) in Germany

  • Kim, Jae-Ceung
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.16-36
    • /
    • 2005
  • The quantity of passenger cars in industrial countries has been significantly increased in recent years. According to prognoses, this tendency is likely to continue in the forthcoming future. As a direct consequence, an increase of End-of Life-Vehicles (ELV) will confront us with the problem of "ELV-Recycling". In order to cope with this situation, the European regulation for the treatment of End-of-Life-Vehicles (09/2000) has been transferred to national law in Germany (ELV-Regulation from 1 July 2002). The long term aim is to reduce residues from the ELV-treatment to less than 5 wt% from 30 wt% within the next 10 years (2015). For that reason, there is a need for innovative and more efficient recycling techniques tailored to future materials in automobiles. The design process at automotive industry is continuously changing due to the strong demand on optional equipment and new technical solutions for fuel saving. Light materials, such as aluminum and plastics, consequently become more important and cause a decrease of ferrous metals. Since plastic materials are often used as compounds, a separation into initial material types by means of mechanical recycling methods is not possible. For that reason, efficient recycling can only be realized by introducing recycling-friendly car designs. In the end an integrated approach of auto makers and recycling industry is of decisive significance for the fulfillment of future regulations.

Safe Decomposition of the Vehicle Waste Battery Module and Development of Separation Process of Cathode Active Material from Aluminum Thin Film (자동차용 폐 리튬 이차전지 모듈의 안정적 해체와 알루미늄 박막으로부터 양극활물질의 분리공정 개발)

  • Kim, Younjung;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.440-445
    • /
    • 2019
  • It has developed a method that can recover efficiently the reproducible resources from the vehicle waste lithium second battery module. Module cell consists of copper thin film, aluminum thin film and diaphragm made with polymer between these thin films. Cell was disassembled completely without any damage in glove box and through several steps. Preferentially, cathode active material was separated from aluminum thin film at heat treatment of 400 ℃. The retrieved cathode active material was then obtained as high purity after calcining at 800 ℃ to remove residual carbon. Based on this study, it was found that rare metals such as Co, Ni, Mn and Li made up of cathode active material could recover above 80% from aluminum thin film.