• Title/Summary/Keyword: 폐유리

Search Result 128, Processing Time 0.023 seconds

Alkali-Silica Reaction of Mortar Containing Waste Glass Aggregates (폐유리 골재를 혼입한 모르터의 알칼리 실리카 반응에 관한 연구)

  • 박승범;이봉춘;권혁준
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2001
  • Incorporation of wastes glass aggregate in mortar may cause crack and this may result in the strength reduction due to alkali-silica reaction(ASR) and expansion. The purposes of this study were to investigate the properties of alkali-silica expansion and strength loss through a series of experiments which had a main experimental variables such as waste glass aggregate contents, glass colors, fiber types, and fiber contents. The steel fibers and polypropylene fibers were used for constraining the ASR expansion and mortar cracking. From the result, green waste glass was more suitable than brown one because of low expansion. And in this accelerated ASTM C 1260 test of waste glass, pessimum content can not be found. Also, when used the fibers with waste glass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. Specially, adding 1.5 vol.% of steel fiber to 20% of waste glass, the expansion ratio was reduced by 40% and flexural strength was developed by up to 110% comparing with only waste glass(80$\^{C}$ H$_2$O curing).

Expansion Properties of Mortar Using Waste Glass and Industrial By-Products (폐유리와 산업부산물을 사용한 모르터의 팽창특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.440-448
    • /
    • 2002
  • Waste glass has been increased with the development of industry. The utilization of waste glass for concrete can cause the concrete to be cracked and to be weakened due to an expansion by alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of waste glass color(amber, emerald-green), industrial by-products(ground granulated blast-furnace slag, fly ash), and the content of industrial by-products for reducing ASR expansion caused by the waste glass. The possibility of using glass ground as pozzolanic properties was also analyzed. From the result of this study, the pessimum size of waste glass was 2.5∼1.2 mm regardless of waste glass color. And the smaller than 2.5∼1.2 mm waste glass is, the more decreasing expansion of ASR is. Also, the combination of waste glass with industrial by-products have an effect on reducing the expansion and strength loss caused by ASR between the alkali in the cement paste and the silica in the waste glass, and the glass ground of less than 0.075 mm is applicable as a pozzolanic material.

Mechanical Properties of Steel Fiber Reinforced Concrete Using Waste Glass (폐유리를 혼입한 강섬유보강 콘크리트의 역학적 특성)

  • 박승범;이봉춘
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1032-1039
    • /
    • 2002
  • Since recycling waste glass as a material for concrete has a great advantage environmentally and economically, the US, Japan and other countries have started recycling waste glass widely and accumulating the technology of manufacturing equipment and its construction. However, there is no practical data on the mechanical property of concrete using waste glass. In this study, the mechanical property of the steel fiber reinforced concrete using waste glass was analyzed in terms of waste glass content(20vo1. %, 40vo1. % as a part of fine aggregate) and steel fiber content(0.5~ 1.5vol.%). The results of this study are as follows : The workability of the concrete including steel fiber and waste glass decreases, as the inclusion rate of waste glass and steel fiber increases. The tensile strength, flexural strength and flexural toughness of the concrete including waste glass increase considerably, as the inclusion rate of steel fiber increases. From the results, the appropriate inclusion rate of steel fiber and waste glass is thought to be 1.0vol. % and 20vo1. %, respectively.

Physical Characteristics of Cement Mortar Prepared Using Waste Glass and Graphene Oxide (폐유리와 산화 그래핀을 사용한 시멘트 모르타르의 물성 연구)

  • Kim, Kyoungseok;Chu, Yongsik
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.54-63
    • /
    • 2019
  • This study investigated on the compressive strength and the length change test with using the waste glass and graphene oxide for recycling the waste glass as the aggregate. Curing on 3-day and 7-day, the compressive strength was enhanced as the usage of waste glass was increased. Especially, the huge difference in the compressive strength was observed when the amount of substituting on the waste glass was used on 10~50%. With 50% of waste glass condition, the compressive strength was portionally enhanced as the usage of graphene oxide was increased and its value was 42.6 N/㎟ with 0.2% of graphene oxide. In terms of the length change test, the use of high content of waste glass led length change value to increase, but it was dropped down as the portion of waste glass was above 50%. Furthermore, in the case of using 50% of waste glass, the use of high amount of graphene oxide tended to decrease the length change value. That is, graphene oxide may contribute on boosting the cement hydration reaction and blocking the ion's movement.

Manufacture and Applications of Cellular Glass for Recycling Waste Glass (폐유리 재활용을 위한 발포유리의 제조 및 활용 기술)

  • Jeon, Bae-Ho;Kim, Jung-Gon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.241-242
    • /
    • 2017
  • 본 논문에서는 폐유리를 재활용하는 발포유리에 대한 기술 및 활용방법에 대한 고찰을 통해 국내에서 적용 가능한 폐유리 재활용기술에 대하여 검토하였다. 폐유리를 재활용한 발포유리는 폐유리를 분쇄한 유리 미분에 규산나트륨, 탄산칼슘, 그라파이트 등의 발포제를 첨가하여 형틀에 넣고 가열을 하면, 유리분말은 소결(sinter)상태가 되는 약 $800^{\circ}C$ 정도가 되면 녹기 시작하고, 발포제는 분해되어 $O_2$와의 반응에서 발생하는 $CO_2$ 가스에 의한 기포가 발생하여 발포유리가 형성되는 제조 방식이다. 이러한 발포유리 방식으로 제작된 판재 및 배관 형태의 불연재료는 건설 및 LGN선박용으로 널리 활용되고 있고, 인공경량 골재의 형태는 건설용 채움재 및 빗물 저류용, 정화용으로 활용되고 있다. 이러한 활용 방식은 국내에서도 충분히 적용 가능한 방식이며, 국내에서의 적용을 통해 폐기물 및 환경부하 저감 효과를 높일 수 있다.

  • PDF

Experimental Study on Physical and Mechanical Properties of Concrete with fine Waste Glass (잔골재로 폐유리를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 박승범;조청휘;김정환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.184-191
    • /
    • 2001
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It cause some problems such as the waste of natural resources and environmental pollution. Therefore, this study was conducted basic experimental research to analyze the possibilities of recycling of waste glasses(crushed waste glasses outbreaking from our country such as amber, emerald-green, flint and mixed) as fine aggregates for concrete. Test results of fresh concrete, slump and compacting factors decrease because grain shape is angular and air content increase due to involving small size particles so much in waste glasses. Also compressive, tensile and flexural strengths decrease with increase of the content of waste glasses. In conclusion, the content of waste glasses below 30% is reasonable and usage of pertinent admixture is necessary to obtain workability and air content.

A Study in order to Utilize Waste Glasses Powder as Admixtures of Self-Compacting Concrete (폐유리(廢琉璃) 미분용(微粉用)을 보수용(補修用) 모르타르 및 자기충전(自己充塡)콘크리트의 혼화재료(混和材料)로 활용(活用)하기 위한 연구(硏究))

  • Choi, Yun-Wang;Jung, Jea-Gwone;Kang, Hyun-Jin
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.29-37
    • /
    • 2008
  • Recently, domestically and internationally, the occurrences of Waste Glass are on the increase. Most of scrap glass are either reused of recycled. However, glass not recycled is buriedand is causing secondary environmental problem. With 5% mixture of Waste Glass, the average paste viscosity (rheology) decreased by 22.3% and 28-day compressive strength of mortar's flow and aging decreased by 1.5% and 6% respectively. Also, as Waste Glass mixture ratio of un-hardened elf-compacting concrete increased, fluidity increased and compressive strength decreased. In consideration of adequate compressive strength and fluidity that meets the 2nd class JSCE regulations; optimum mixture ratio of Waste Glass can be concluded as 20%.

Experimental Study on the Mechanical Properties of Glass Concrete with Powdered Waste Glasses (폐유리 분말을 혼입한 유리 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 배수호;정영수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • As a part of the movement of natural resources conservation, there have been doing many recycling research works for obsolete aged tire, wasted plastic materials, etc. The purpose of this experimental study is to develop glass concrete by recycling wasted glasses as a cementitious constituent in concrete. First of all, the optimum replacement ratio of powdered waste glasses(PWG) can be determined through pilot compressive strength test on normal and high strength concrete cylinders, which have been made in various mix proportions by changing the replacement ratio of PWG. Then, further tests have been done to figure out mechanical properties of most desirable glass concrete with optimum replacement ratio of PWG, such as static modulus of elasticity, compressive and tensile strengths, flexural strength. On the other hand, the alkali-silica reactions by the mortar-bar method(KS F 2546) have been experimentally doing in various grain sizes of PWG, since the alkali in the cement has a tendency to react with the silica in the PWG. In can be confirmed from the test that glass concrete can have better workability than concrete with silica fume, and they are alike in compressive strength. It is concluded that wasted glasses can be used as pratical additives for economic and environmentally friendly concrete.

Evaluation on the Applicability of Heavy Weight Waste Glass as Fine Aggregate of Shielding Concrete (고밀도 폐유리의 차폐 콘크리트 잔골재로의 활용가능성 평가)

  • Choi, So-Yeong;Choi, Yoon-Suk;Won, Min-Sik;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.101-108
    • /
    • 2015
  • The quantities of heavy weight waste glass have been progressively increased because of the rapid industrialization and the change of quality of life. And, the most of them are not recycled. The heavy weight waste glass have been treated by illegal dumping or being buried in landfills. Meanwhile, in order to ensure the safety of nuclear power plant structure, the excellent construction materials are socially required for shielding performance. Concrete is the most widely used construction material, the huge amounts of natural resources are required to make concrete. So, it is needed to investigate the possibility of recycling of heavy weight waste glass as concrete material ingredient. In this study, the heavy weight waste glass was evaluated for the applicability as fine aggregate of shielding concrete. From the results, when heavy weight waste glass was replaced as fine aggregate of mortar, shielding performance can be improved due to increasing in unit weight of mortar. It showed that the strength decreased according to mixing of heavy weight waste glass, Non-Washed heavy weight waste glass is more advantageous in the strength development than Washed case.

The Strength Characteristics of Cement ZERO Mortar Mixing Waste Glass Powder and Fly Ash as Binder (플라이애시와 폐유리 미분말을 혼합한 시멘트 ZERO 모르타르의 강도특성)

  • Kang, Hyun-Jin;Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Park, Jung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.649-652
    • /
    • 2008
  • Glass is often recycled. In order to recycle, glass is crushed and ground. During this process, glass powder is generated. Most of this scrap glass powder is disposed in landfills. The glass powder, consisting of 73% SiO$_2$ and 16% Al$_2$O$_3$, is richer in components necessary for polymerization than fly ash. In this study, the fluidity and compressive strength of cement zero mortar were investigated, where cement zero mortar was prepared by mixing 5$\sim$15% of glass powder with 100% fly ash mortar. Result of flow test concluded that workability was not affected by adding the powder. After aging for 28 days, the compressive strength increased by approximately 6% with 5% addition of scrap glass powder. With 10% addition, the strength remained the same. In case of 15% addition, the compressive strength decreased by approximately 6%. To summarize the results, 5$\sim$10% addition of scrap glass powder is considered to be most appropriate.

  • PDF