• 제목/요약/키워드: 폐렴 유무 자동진단

검색결과 2건 처리시간 0.014초

학습률 적용에 따른 흉부영상 폐렴 유무 분류 비교평가 (Comparative Evaluation of Chest Image Pneumonia based on Learning Rate Application)

  • 김지율;예수영
    • 한국방사선학회논문지
    • /
    • 제16권5호
    • /
    • pp.595-602
    • /
    • 2022
  • 본 연구는 딥러닝을 이용한 흉부 X선 폐렴 영상에 대하여 정확하고 효율적인 의료영상의 자동진단을 위해서 가장 효율적인 학습률을 제시하고자 하였다. Inception V3 딥러닝 모델에 학습률을 0.1, 0.01, 0.001, 0.0001로 각각 설정한 후 3회 딥러닝 모델링을 수행하였다. 그리고 검증 모델링의 평균 정확도 및 손실 함수 값, Test 모델링의 Metric을 성능평가 지표로 설정하여 딥러닝 모델링의 수행 결과로 획득한 결과값의 3회 평균값으로 성능을 비교 평가하였다. 딥러닝 검증 모델링 성능평가 및 Test 모델링 Metric에 대한 성능평가의 결과, 학습률 0.001을 적용한 모델링이 가장 높은 정확도와 우수한 성능을 나타내었다. 이러한 이유로 본 논문에서는 딥러닝 모델을 이용한 흉부 X선 영상에 대한 폐렴 유무 분류 시 학습률을 0.001로 적용할 것을 권고한다. 그리고 본 논문에서 제시하는 학습률의 적용을 통한 딥러닝 모델링 시 흉부 X선 영상에 대한 폐렴 유무 분류에 대한 인력의 보조적인 역할을 수행할 수 있을 거라고 판단하였다. 향후 딥러닝을 이용한 폐렴 유무 진단 분류 연구가 계속해서 진행될 시, 본 논문의 논문 연구 내용은 기초자료로 활용될 수 있다고 여겨지며 나아가 인공지능을 활용한 의료영상 분류에 있어 효율적인 학습률 선택에 도움이 될 것으로 기대된다.

Xception 모델링을 이용한 흉부 X선 영상 폐렴(pneumonia) 진단 시 배치 사이즈별 비교 분석 (Comparative Analysis by Batch Size when Diagnosing Pneumonia on Chest X-Ray Image using Xception Modeling)

  • 김지율;예수영
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.547-554
    • /
    • 2021
  • 흉부 X선 영상의 폐렴을 신속하고 정확하게 진단하기 위하여 동일한 Xception 딥러닝 모델에 배치 사이즈를 4, 8, 16, 32로 다르게 적용하여 각각 3회의 모델링을 실시하였다. 그리고 성능평가 및 metric 평가에 대한 결과값을 3회 평균값으로 산출하여 배치 사이즈별 흉부 X선 영상의 폐렴 특징 추출과 분류의 정확도 및 신속성을 비교 평가하였다. 딥러닝 모델링의 성능평가 결과 배치 사이즈 32를 적용한 모델링의 경우 정확도, 손실함수 값, 평균제곱오차, 1 epoch 당 학습 소요 시간의 결과가 가장 우수한 결과를 나타내었다. 그리고 Test Metric의 정확도 평가는 배치 사이즈 8을 적용한 모델링이 가장 우수한 결과를 나타내었으며, 정밀도 평가는 모든 배치 사이즈에서 우수한 결과를 나타내었다. 재현율 평가는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었으며, F1-score는 배치 사이즈 16을 적용한 모델링이 가장 우수한 결과를 나타내었다. 그리고 AUC score 평가는 모든 배치 사이즈의 결과가 동일하였다. 이러한 결과를 바탕으로 배치 사이즈 32를 적용한 딥러닝 모델링이 높은 정확도, 안정적인 인공신경망 학습 및 우수한 신속성의 결과를 나타내었다. 향후 딥러닝을 이용한 흉부 X선 영상의 폐렴에 대한 특징 추출 및 분류에 관하여 자동진단 연구 시 배치 사이즈를 32로 적용한다면 정확하면서도 신속한 병변 검출이 가능할 것이라고 사료된다.