• Title/Summary/Keyword: 폐기물 처리

Search Result 1,642, Processing Time 0.02 seconds

Evaluation of microplastic in the inflow of municipal wastewater treatment plant according to pretreatment methods (전처리 방법에 따른 하수처리장 유입수에서의 미세플라스틱 성상분석 평가)

  • Kim, Sungryul;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • The amount of the plastic waste has been increasing according to global demand for plastic. Microplastics are the most hazardous among all plastic pollutants due to their toxicity and unknown physicochemical properties. This study investigates the optimal methodology that can be applied to sewage samples for detecting microplastics before discussing reducing microplastics in MWTPs. In this study, the effect of different pretreatment methods while detecting microplastic analysis of MWTP influent samples was investigated; the samples were collected from the J sewage treatment plant. There are many pretreatment methods but two of them are widely used: Fenton digestion and hydrogen peroxide oxidation. Although there are many pretreatment methods that can be applied to investigate microplastics, the most widely used methods for sewage treatment plant samples are Fenton digestion and H2O2 oxidation. For each pretreatment method, there were factors that could cause an error in the measurement. To overcome this, in the case of the Fenton digestion pretreatment, it is recommended to proceed with the analysis by filtration instead of the density separation method. In the case of the H2O2 oxidation method, the process of washing with distilled water after the reaction is recommended. As a result of the analysis, the concentration of microplastics was measured to be 2.75ea/L for the sample using the H2O2 oxidation method and 3.2ea/L for the sample using the Fenton oxidation method, and most of them were present in the form of fibers. In addition, it is difficult to guarantee the reliability of measurement results from quantitative analysis performed via microscope with eyes. A calibration curve was created for prove the reliability. A total of three calibration curves were drawn, and as a result of analysis of the calibration curves, all R2 values were more than 0.9. This ensures high reliability for quantitative analysis. The qualitative analysis could determine the series of microplastics flowing into the MWTP, but could not confirm the chemical composition of each microplastic. This study can be used to confirm the chemical composition of microplastics introduced into MWTP in the future research.

A Study on the Difficulties Faced by High School Science Teachers in Operating LMO Laboratories (고등학교 LMO 실험실 운영에서 과학교사가 갖는 어려움에 관한 연구)

  • Seongjae Lee;Jiwon Yeo;Sang-Hak Jeon
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • As the social and economic value of living modified organisms (LMOs) increase, so do the potential risks they pose to humans and the environment. Therefore, all laboratories using LMOs must establish an LMO laboratory in accordance with the standards required by regulations. Recently, in high school, LMO-related experimental programs have been developed for their educational effects. Also, in this case, it is necessary to comply with the regulation for LMO laboratories. However, high schools are still unfamiliar with the LMO laboratory, and it is difficult for teachers to manage an LMO laboratory because its implementation applies the same standards to general research institutes. In this study, we used causal chain analysis to discover the difficulties each teacher faced while setting up an LMO laboratory by examining three cases. The difficulties experienced by teachers are as follows: the first problem is "reluctance to set up an LMO laboratory," because of "administrative tasks for laboratory registration" and "difficulty in persuading colleagues." The second problem is a difficulty for teachers to operate LMO laboratory in blind spots, due to "inflexible installation and closure," "medical waste disposal," and "LMO education that does not fit the school context." Through this study, although the difficulty of running an LMO laboratory is caused by a lack of necessity and insufficient consideration of the school context, the more fundamental cause was a lack of collaborative planning between the educational field and the operating institutions. The teachers who participate in this research suggest that "using shared LAB" and "preparing opportunities for knowledge sharing" can be considered as strategies for operating the school's LMO laboratory. We feel that this study will provide a useful reference for teachers or schools planning to build an LMO laboratory.