• Title/Summary/Keyword: 폐골재

Search Result 206, Processing Time 0.029 seconds

A Study on the Properties of Converter Slag Modified by Addition of Waste Foundry Sand (폐주물사를 첨가한 전로슬랙의 개질특성에 관한 연구)

  • 김영환;김종학;고인용
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 1999
  • Converter slag was reduced and modified by the simultaneous addition of carbon and waste foundry sand as a $SiO_2$ source. The basic properties such as phase distribution, composition, specific density, hardness. absorption of water and compressive strength of modified slags were measured. The Iron recovery was significantly affected by the basicity of slag. The properties of slow cooled-modified slags of basicity 1.34 arc very similar to the natural aggregates.

  • PDF

A Study on Trend for Recycling Technology of Waste Wood and Its Utilization as Lightweight Fine Aggregate (폐목재의 활용을 위한 기술동향 분석 및 경량잔골재로서의 활용방안에 관한 연구)

  • Choi, Jae-Jin;Moon, Seung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.84-90
    • /
    • 2012
  • Patents in Korea, Japan and the U.S. were searched at the Korea Intellectual Property Rights Information Service (KIPRIS) of Korea Institute of Patent Information using related keywords in order to analyze the trend of patents on the usage of waste wood. Materials on a total of 77 patents in Korea, 317 patents in Japan, and 316 patents in the U.S. that had been registered as patents as of Dec. 31, 2011 were collected. Among the collected materials, the patents rejected, expired, annulled, withdrawn and waived as well as those which had little relationship with waste wood were excluded and the 71 patents in Korea, 227 patents in Japan and 216 patents in the U.S. were finally selected for analysis. In addition, the properties of the mortar which used waste wood as an alternative for a part of the fine aggregate were tested as a basic study for the usage of waste wood as a lightweight aggregate for concrete. For the test, the waste wood of the pine tree was crushed, sifted through No. 8(2.4 mm) sieve, and then dried for 24 hours at $100{\pm}5^{\circ}C$. As it is known that some kinds of tree prevent the hardening of cement when the wood is mixed with cement, the crushed waste wood in this study was dipped in the water of $20^{\circ}C$, $50^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$ and then dried up before testing the properties of the mortar to examine the effect of the preliminary treatment of crushed waste wood.

  • PDF

Lightweight Aggregate Bloating Mechanism of Clay/Incinerated Ash/Additive System (점토/소각재/첨가제계 인공 경량골재의 발포기구)

  • Kwon, Yong-Joon;Kim, Yoo-Taek;Lee, Ki-Gang;Kim, Young-Jin;Kang, Seung-Gu;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.811-816
    • /
    • 2001
  • The influence of the incinerated ash and additives on glass phase formation of lightweight aggregate, weight-lightening, and the bloating mechanism was investigated. Clay was used as base materials and incinerated ash was added from 0 to 30wt%. The additives such as $Na_2CO_3,\;CaCo_3,\;K_2CO_3,\;MgCO_3$, and a little amount of waste oil were added to the mixed body. In clay/incinerated ash/additive system, it turned out that $CaCO_3\;and\;MgCO_3$ were the components for glass phase formation and $Na_2CO_3$ was the component for both glass phase formation and weight-lightening. The small addition of waste oil from 0.5wt% to 3.0wt% affect on the bloating of aggregate. Incinerated ash had a good effect on the glass phase controlling. The most effective condition controlling glass phase and bloating of aggregate was 10wt% incinerated ash, 2wt% waste oil at 1200$^{\circ}$C. The bloating mechanism of lightweight aggregate is as follows; 1) micro-crack formation caused by thermal-shock and gas generation from inside of aggregate, 2) volume expansion by glass phase formation on the aggregate surface and rapid gas bloating inside of aggregate, 3) densification after bloating.

  • PDF

An Impurity Quantitative Study for Pavement Application in Recycled Waste Aggregates (재생골재의 도로적용을 위한 이물질 정량화 연구)

  • Park, Jun-Young;Cho, Yoon-Ho;Lim, Nam-Woong
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.21-29
    • /
    • 2005
  • One way to recycle the construction wastes is to use the waste concrete aggregates as the pavement materials. Although there are many studies and technical developments about waste concrete aggregates, the impurities produced in the process of the aggregate production prevent the use of the waste concrete aggregates in the pavement construction. In this study, the impurities included in the recycled waste aggregates were classified into inorganic and organic ones according to their characteristics, and the influences of each impurities on the pavement performance were presented. It was also showed that the limit of impurity content in the lean concrete base through the correlation between the inorganic impurity content and the compressive strength, and that in the granuler subbase layer through the correlation between the organic impurity content and the modified CBR. In conclusion, it is possible to apply waste concrete aggregates for the pavement when inorganic impurity content is less than 10% in the lean concrete base, and organic impurity content is less than 2% in granular subbase.

  • PDF

Experimental Performance Characteristics of Crumb Rubber-Modified(CRM) Asphalt Concrete (폐타이어활용 아스팔트 콘크리트의 실험적 공용특성)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.89-97
    • /
    • 2003
  • Indirect tensile strength(IDT) test and resilient modulus(Mr) test were performed to evaluate experimental performance characteristics for the conventional and crumb rubber-modified(CRM) asphalt concrete using dry and wet processes asphalt. The IDT test was conducted under three temperatures(5, 10, 20$^{\circ}C$). According to the test results, it was shown that indirect tensile strength of CRM asphalt concrete was lower than that of the conventional one. However, toughness and maximum vortical strain of the CRM asphalt concrete were higher than those of the conventional one. The results of Mr test were presented that Mr of CRM asphalt concrete was higher than that of the conventional one. In addition, it was revealed that the overall laboratory performance characteristics of the wet-processed CRM asphalt concrete was better than those of the dry-processed one.

Mechanical Properties of Lightweight Mortar in Accordance with the Particle Size and Replacement Ratio of the Wasted Tire Chip (폐타이어 분말의 치환율과 입자크기에 따른 경량 모르타르의 역학적 특성)

  • Yang, Hun;Lee, Yong;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.342-347
    • /
    • 2015
  • This study is basic experiment which prevents indiscriminate reclamation and recycles the wasted tire in order to solve environmental pollution according to generation rate of the wasted tire from recently industrial development. By applying as the substitute material of the lightweight aggregate among the constructional materials in order to evaluate the lightness of the wasted tire chip and suggest the recycling plan of the wasted tire chip. The prior experiment did the replacement ratio of the wasted tire with 20%, 40%, 60%, 80%, 100%, etc. and made a study on the strength and density properties. Based on the prior experiment of wasted tire, the replacement ratio was fixed at 15, 20, 25%, particle size of wasted tire was fixed at 0.2, 0.8, 1~2, 3~5, 5~7(mm). As a result, it is supposed that the best replacement ratio and particle size are 15% and 1~2mm, respectively.

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

A Fundamental Study on the Load Resistance Characteristics of Revetment Concrete Block with Recycled Concrete Aggregate and GFRP Rebar (순환골재와 GFRP 보강근을 적용한 호안블럭의 하중저항특성에 관한 연구)

  • Kim, Yongjae;Kim, Jongho;Moon, Doyoung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.42-51
    • /
    • 2022
  • Aggregate resources in Korea are expected to run out owing to an increase in development demand and construction investment. Recycled concrete aggregates (RCA), extracted from waste concrete, have a lower quality than natural aggregates. However, RCA can produce concrete similar in quality to the normal concrete by aggregate pretreatment, use of admixtures, and quality control. RCA are most suitable for use in precast concrete products such as sidewalk blocks and revetment blocks. Herein, the feasibility of producing revetment blocks using recycled aggregate concrete (RAC), similar in quality to normal concrete, was analyzed. The amount of RCA was varied, and moderate high early strength cement and steam curing were used to produce the concrete test blocks. In the block test, the load resistance characteristics of the blocks were evaluated to determine optimal RAC and glass fiber reinforced polymer (GFRP) rebar compositions. Thus, the variable that reduced the cement content was determined at the same level as that of natural aggregate concrete by the control of steam curing. In the concrete block test, although this depends on the reinforcement ratio, the RAC block exhibited the same or better performance than a normal concrete block. Therefore, the low quality of RCA in RAC is no longer a problem when concrete mixing and curing are controlled and appropriate reinforcement is used.

Property of recycled aggregates for concrete by gravity separation (비중선별에 의한 콘크리트용 순환골재의 물성)

  • Kong, Kyoung-Rok;Park, Mi-Jung;Kim, Chang-Soo;Kang, Heon-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.355-356
    • /
    • 2009
  • The recycled aggregates include a lot of aggregates for concrete. Using the heavy medium separation method that is one of the specific gravity separation methods, about 45% of the waste concrete could be converted to the recycled aggregates.

  • PDF