• Title/Summary/Keyword: 평형 유동

Search Result 146, Processing Time 0.026 seconds

Fullly Developed Turbulent Flow and Heat Transfer in Concentric Annuli with Square - Ribbed Roughness (사각형 거칠기가 있는 동심이중관 내의 완전히 발달된 난류유동과 열전달)

  • 안수환;오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.41-50
    • /
    • 1994
  • 동심 이중관내에서 외관내벽의 사각돌출형 조도요소에 의한 비대칭 난류유동과 열전달 특성을, 열전달과 마찰계수에 미치는 조도의 합성효과를 조사하기 위해, 연구하였다. 이론해석에서는 수정 플란틀 혼합길이(mixing length)이론의 난류모델을 속도분포와 마찰계수를 구하는데 사용하였다. 최대 속도지점에서 안쪽과 바깥쪽의 두 속도 형상들은 힘의 평형에 의해 일치시켰다. 그리고나서, 온도분포와 열전달 계수를 계산하였다. 속도형상과 마찰계수들의 해석결과는 반경비 (${\alpha}$)= 0.13, 0.26, 0.4, 그리고 0.56 경우의 실험과 매우 잘 일치하였다. 마찰계수와 Nusselt number에 미치는 반경비, 조도비, 그리고 조도에 대한 피치비 등과 같은 여러 변수들의 효과들을 조사하였다. 본 연구는 일정 조도 요소들이 전체적 효율 측면에서 볼 때 열전달을 우리하게 향상시킨다는 것을 증명하였다.

  • PDF

선박의 최적 운항 자세 도출 및 수직 몰수 익형 주위 유동 해석을 위한 EDISON 해석자 활용

  • Kim, Yeon-Ju;Jo, Hui-Ju;Park, Sang-Min
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.35-43
    • /
    • 2016
  • 본 연구에서는 EDISON의 해석자를 활용하여 선박의 최적 운항 자세 도출과 같은 실용적 문제 해석뿐 만 아니라 자유 수면 및 대칭 경계 조건이 수직한 몰수 익형 주위 유동에 미치는 영향을 분석하는 학술적 연구를 수행하였다. 선박의 자세에 따른 저항 변화를 분석한 결과 0.5m 선수 트림에서 선체 저항이 가장 작은 것으로 나타났으며, 이는 유동 가속에 의한 선수 어깨부의 낮은 압력 및 선미부에서의 압력 회복에 의한 것이다. 반면, 1.0m 선미 트림에서 선체 저항이 가장 큰 것으로 나타났는데, 평형 상태보다 선미부의 압력 회복이 약하기 때문이다. 또한 자유 수면과 대칭 경계 조건이 날개 성능에 미치는 영향을 분석한 결과, 비현실적 대칭경계 조건으로 인해 날개 양력이 13%~16% 크게 나타났으므로 대칭경계조건을 사용할 경우에는 이러한 오차를 감안해야 한다.

  • PDF

A Theoretical Approach on the Pressure Drop in Two-phase Particle-laden Flows (고체입자가 부상된 이상유동에서 압력강하에 대한 해석적 접근)

  • Kim Seyun;Lee Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.11-17
    • /
    • 2005
  • The purpose of this research is to develop the model of pressure drop per unit pipe length due to the turbulence modulations in particle-laden flows which can be applied to various fluid conditions. The wake behind a particle, particle size, loading ratio and density difference between two phases of particle-laden flow was considered. The frictional pressure drop was modeled with the force balance in control volume. The numerical results show good agreements with available experimental data and the model success-fully predicted the mechanism of the pressure drop in particle-laden flows.

Two phase analysis of solid rocket motor plume as particle characteristics (입자 특성에 따른 고체모터 플룸 이상유동 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • KSLV-I KM plume including alumina particle has been studied using the continuum solver. Alumina particles are assumed to have 7 different diameters, and the specific ratio of the plume gas is assumed to be 1.2, with which the internal nozzle flow characteristics are similar to those of the chemically equilibrium analysis results. The results showed that the expansion angle of the particles is smaller than that of the gas phase, and that the big sized alumina particles are gathered in the plume core and the expansion angles of the big sized particles are smaller than those of the light particles. When the emissivity of the particles are assumed to be 0.1, the radiative heat flux is equivalent to those measured during the flight test of KSLV-I.

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Equilibrium Adsorption Relationships (평형 모델을 이용한 다공매질에서의 유동 세균에 의한 유기성 오염물의 가속이송)

  • 신항식;김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.14-21
    • /
    • 1995
  • Colloids such as exogenous biocolloids in a bioremediation operation can enhance the transport of contaminant in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions in addition to their low density, bacteria can act as efficient contaminant carriers. When mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and the stationary solid matrix phase. In this work, a mathematical model based on mass balances is developed to describe the facilitated transport and fate of a contaminant in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix, and the contaminant partition among the three phases are represented by the equilibrium relationships. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensionless analysis of the transport model was utilized to estimate model parameters from the experimental data. The model results matched with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant which serves as a bacterial nutrient, can attenuate the contaminant concentration.

  • PDF

A Sudden Increase in Combustion Pressure of Gas Generator of Ducted Rocket by Thermal Choking (열 질식에 의한 덕티드 로켓 가스 발생기의 연소 압력 상승)

  • Kim, Doyeong;Shin, Kyung-Hoon;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.684-691
    • /
    • 2015
  • A sudden increase in combustion pressure is observed in the ducted rocket combustion test equipped with pipe shaped and converging nozzle exhaust tubes. This study aims to understand the physical mechanism of abrupt change in combustion pressure using thermal choking in the exhaust tube. Results confirmed that the thermal choking of the flow inside the exhaust tube was responsible for the sudden increase in combustion pressure. Also, high pressure exponent of solid propellants is critical sensitive to the occurrence of thermal choking exhaust pipe. Additionally, numerical simulation showed that the sudden increase in combustion pressure was less possible in diverging pipe because thermal choking is more reluctant to occur.

Flow Characteristics of Pressure Balancing Valve with Various Piston Shapes (피스톤 형상변화에 따른 압력평형밸브의 유동특성연구)

  • Kim, Tae-An;An, Byeong-Jae;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2168-2173
    • /
    • 2003
  • Pressure balancing valve is one of important control devices, which is fully automatic and no manual controls, regulating or adjustments are needed. It is typically used to maintain constant temperature of working fluid in power and chemical plants and domestic water supply systems. Pressure balancing valve is composed of body, cylinder and balancing piston. Therefore, the balancing piston shapes are important design parameters for a pressure balancing valve. In this study, numerical and experimental analyses are carried out with two different balancing piston shapes. Especially, the distribution of static pressure is investigated to calculate the flow coefficient($C_v$). The governing equations are derived from making using of three-dimensional Navier-Stokes equations with standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using commercial code, PHOEIC, the pressure and flow fields in pressure balancing valve are depicted.

  • PDF

The Equilibrium Solution and the Stability Analysis of Reynolds Stress Equations for a Homogeneous Turbulent Shear Flow (난류 균일전단유동에 대한 레이놀즈 응력 모형방정식의 평형해와 안정성 해석)

  • 이원근;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.820-833
    • /
    • 1995
  • An analysis is performed to examine the equilibrium state and the stability of modeled Reynolds stress equations for homogeneous turbulent shear flows. The system of the governing equations consists of four coupled ordinary differential equations. The equilibrium states are found by the steady state solution of the governing equations. In order to investigate the stability of the system about its state in equilibrium, and eigenvalue problem is constructed. As a result, constraints for the coeffieients in the model equations are obtained by the stability condition of the equilibrium state as well as by their physically realizable bounds. It is observed that the models with pressure-strain rate correlation that are linear in the anisotropy tensor are stable and produce reasonable equilibrium tensor do not behave properly. Stability considerations about three most commonly used models are given in detail in the final section.

Stress Relaxation of mayonnaise Colloidal Solution (마요네즈 콜로이드 용액의 응력완화에 관한연구)

  • 윤승희
    • The Korean Journal of Rheology
    • /
    • v.7 no.1
    • /
    • pp.28-34
    • /
    • 1995
  • 고체가 아닌 계인 마요네즈에 대해 Couette형 점도계를 사용하여 일정한 전단속도에 서 시간과 더불어 전단응력이 감소하는 응력완화 곡선을 온도 2$0^{\circ}C$, $25^{\circ}C$, 3$0^{\circ}C$, 34$^{\circ}C$, 4$0^{\circ}C$ 에서 얻었다 이현상을 설명하기 위하여 구조가 형성되는 flow unit 2와 구조가파괴되는 flow unit 3에 대한 fraction (X2, X3)사이의 평형을 생각하고 X2 와 X3 에 해당하는 항에 실 험적 조건인 s=p(t0+t)의 관계를 적용하여 다음과 같은 응력완화에 관한 식을 구하고 이식을 실험결과에 적용하여 유동파라메타를 구하였으며 그 파라메타중의 평형상수 k와 실험 온도 를 이용하여 열역학 파라메타를 구하였다.

  • PDF

The Development of a Heat Balance Evaluation Program for the Main Steam Line of LNG Carrier (LNG선 주증기계통의 열평형산전용 전산프로그램 개발)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.854-861
    • /
    • 1998
  • The demand of LNG as a cheap and clean energy which does not cause an environmental problem has sharply been increased in Korea. In general LNG is stored in a cargo tank specially designed as a liquid state below $-162^{\circ}C$. The main engine of a LNG carrier is generally a steam boiler because LNG is a highly flammable fluid with the possibility of explosion. The main engine of a cargo ship has to be capable of the propulsion load and various auxiliary loads for the safe navigation since it is the primary energy source. Therefore the evaluation of a main boiler's energy capacity is a key design point in the planning of LNG carrier's construction. This research is to develop the computational program for the analysis of steam boiler Heat balance for LNG carrier.

  • PDF