• Title/Summary/Keyword: 평행구조 기구

Search Result 12, Processing Time 0.016 seconds

Characteristics in the Deposition of Mn-Zn Ferrite Thin Films by Ion Beam Sputtering Using a Single Ion Source (단일 이온원을 사용하는 이온빔 스퍼터링법에 의한 Mn-Zn 페라이트 박막의 증착 기구)

  • Jo, Hae-Seok;Ha, Sang-Gi;Lee, Dae-Hyeong;Hong, Seok-Gyeong;Yang, Gi-Deok;Kim, Hyeong-Jun;Kim, Gyeong-Yong;Yu, Byeong-Du
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.239-245
    • /
    • 1995
  • Mn-Zn ferrite thin films were deposited on $SiO_2(1000 \AA)/Si(100)$ by ion beam sputtering using a single ion source. A mosaic target consisting of a single crystal(ll0) Mn-Zn ferrite with a Fe metal strip on it was used. As-deposited films without oxygen gas flow have a wiistite structure due to oxygen deficiencies, which originated from the extra metal atoms sputtered from the metal strips during deposition. The as-deposited films with oxygen gas flow, however, have a spinel structure with (111) preferred orientation. The crystallization of thin films was maximized at the ion beam extraction voltage of 2.lkV, at which the deposited films are bombarded appropriately by the energetic secondary ions reflected from the target. As the extraction voltage increased or decreased from the optimum value, the crystallinity of thin films becomes poor owing to a weak and severe bombardment of the secondary ions, respectively. Crystallization due to the bombardment of the secondary ions was also maximized at the beam incidence angle of $55^{\circ}$. The as-deposited ferrite thin films with a spinel structure showed ferrimagnetism and had an in-plane magnetization easy axis.

  • PDF

Modeling Paddlewheel-Driven Circulation in a Culture Pond (축제식 양식장에서 수차에 의한 순환 모델링)

  • KANG Yun Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.643-651
    • /
    • 2001
  • Paddlewheel-driven circulation in a culture pond has been simulated based on the depth integrated 2 dimensional hydrodynamic model. Acceleration by paddlewheel is expressed as shaft force divided by water mass discharged by paddlewheel blades. The model has been calibrated and applied to culture ponds as following steps:- i) The model predicted velocities at every 10 m along longitudinal direction from the paddlewheel. The model was calibrated comparing the results with the measured values at mass correction factor $\alpha$ and dimensionless eddy viscosity constant $\gamma$, respectively, in a range $15\~20$ and 6. ii) Wind shear stress was simulated under conditions of direction $0^{\circ}C,\;90^{\circ}C\;and\;180^{\circ}C$ and speed 0.0, 2.5, 5.0 and 7.5 m/s. Change rate of current speed was <$1\%$ at wind in parallel or opposite direction to the paddlewheel-driven jet flow, while $4\%$ at orthogonal angle. iii) The model was then applied to 2 culture ponds located at the Western coast of Korea. The measured and predicted currents for the ponds were compared using the regression analysis. Analysis of flow direction and speed showed correlation coefficients 0.8928 and 0.6782 in pond A, 0.8539 and 0.7071 in pond B, respectively. Hence, the model is concluded to accurately predict circulation driven by paddlewheel such that it can be a useful tool to provide pond management strategy relating to paddlewheel operation and water quality.

  • PDF