• Title/Summary/Keyword: 평판안테나

Search Result 127, Processing Time 0.023 seconds

Leaky Wave Radiation and Surface Wave Launching Problem in a Dielectrically Covered Periodically Slitted Parallel-Plate Waveguide (주기적인 슬릿을 갖고 유전체층으로 덮힌 평행평판 도파관에서의 누설파 복사 및 표면파 launching)

  • 이종익;이철훈;조영기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.25-33
    • /
    • 1999
  • Leaky wave radiation and surface wave launching problems in a dielectrically covered and periodically slitted parallel-plate waveguide(PPW) are considered for the TEM wave incidence case. Both the infinite and finite periodic geometries are analyzed by use of the method of moments. Some numerical results for the reflected and transmitted powers in the PPW, radiation efficiency into the free space, surface wave launching efficiency into the slab, antenna gain, and radiation patterns against dielectric thickness are presented to show the effect of the dielectric cover on the performances of the slitted leaky wave antenna. In addition, the method for improving surface wave launching efficiency using the proposed periodic geometry is described and maximum launching efficiency of 97.5% is obtained theoretically. So this structure is thought to be promising as an efficient feeder of dielectric grating antenna as well as image guide.

  • PDF

Improvement of Radiation Performance of Mobile Phone Antenna Using PIFA on U-Shaped Ground Plane (U-형 접지면 상에 배치된 평판형 역 F 안테나 구조를 이용한 휴대폰 단말기의 무선 성능 개선)

  • Lee, Jeong-Ho;Song, Jae-Kwan;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.90-97
    • /
    • 2010
  • In this paper, we propose antenna topology and ground plane shape to improve the performance of PIFA (Planar Inverted F Antenna) which is built-in mobile phone. First, we designed the PIFA antenna consists of multiple radiators to provide multi-current paths. Then we designed U-shaped ground plane on the PCB under the antenna. The proposed antenna structure shows TRP/TIS improvement of 2.0 dB/3.7 dB for GSM and 2.2 dB/ 2.0 dB for DCS and 0.8 dB/1.5 dB for PCS and 1.3 dB/0.7 dB for WCDMA at the free space.

Design of Multiband Repeater Antenna with Fire-Fighting Band for In-Building Mobile Communication (소방무선대역을 포함하는 인빌딩용 다중대역 중계기 안테나 설계)

  • Kim, Sung-Min;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.495-503
    • /
    • 2016
  • This paper proposes the design of multiband repeater antenna with fire-fighting band for in-building mobile communication. The proposed antenna is composed of a center monopole and 4 parasitic elements on a circular plate. In order to realize good reflection coefficients at the multiband, mutual coupling between 4 parasitic elements and center monopole antenna is considered. The important parameters such as distance between parasitic element and a center monopole, and each height of a center monopole and 4 parasitic elements are simulated to obtain good antenna characteristics at the multiband. The diameter of 4 parasitic elements and a center monopole was fixed to 10 mm for easy design and manufacturing. The measurement results of reflection coefficients, 2-D patterns and gain agreed well with their simulation ones.

Analysis of Throughput Field Test Data Acquired Using Vehicle Mounted Multi-Band MIMO Antenna (다중대역 MIMO 안테나의 차량탑재 필드테스트 결과 분석)

  • Kim, Seung-Ho;Chung, Jae-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.745-751
    • /
    • 2018
  • This paper reports on the design of a multiband multiple-input and multiple-output(MIMO) antenna for long-term evolution(LTE) vehicular communication and includes an analysis of the throughput field test results that were acquired by mounting the antenna to a vehicle. The antenna used for the field test was designed as a planar structure and included multiple stubs to obtain multiband resonant characteristics operating in the LTE(0.8~0.9 GHz, 1.7~2.2 GHz), Wi-Fi(2.4~2.48 GHz), and wireless access in vehicular environments (WAVE)(5.8~5.9 GHz) frequency bands. For the field test, antenna prototypes were mounted on the dashboard and roof of a vehicle and connected to the experimental LTE modem. The data transfer rate(throughput), signal-to-interference-plus-noise ratio(SINR), and reference signal received quality(RSRQ) were measured and analyzed in various real-world radio wave environments. Based on these results, the relationship between the SINR and throughput according to the field intensity is confirmed.

Design of a Planar Log-Spiral Antenna for Testing Plane-Wave Shielding Effectiveness (평면파 차폐효과 시험용 평판형 로그 스파이럴 안테나 설계)

  • Chung, Yeon-Choon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.762-767
    • /
    • 2019
  • The plane-wave shielding effectiveness is typically measured for horizontal and vertical polarizations using a linearly polarized antenna. However, this typical measurement method results in big evaluation fees due to very long measurement time as well as huge idle space for maintenance, these problems is more severe especially in large shielded enclosures such as EMP protection facilities to be built in indoor buildings and underground. This paper describes the design and fabrication process and results of a planar log-spiral antenna applicable to the evaluation of the electromagnetic shielding effectiveness of a large EMP protection facility. Since the proposed antenna has a circular polarization, there is no need to separately measure the horizontal and vertical polarizations. Therefore, the measurement time can be shortened by more than 1/2, and further, its small volume with a planar structure can reduce greatly idle space required for the maintenance.

Small Broadband Phased Array Antenna with Compact Phase-Shift Circuits (간결한 위상 변위 회로를 갖는 소형 광대역 위상 배열 안테나)

  • 한상민;권구형;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1071-1078
    • /
    • 2003
  • In this paper, the planar, compact, and broadband phased array antenna system for IMT-2000 applications has been investigated. Two methods far designing a low-cost and low-complex beam-farming network are proposed. First, a new compact and broadband phase shifter with continuously controlled phase bits is designed by using parallel coupled lines. Second, its equivalent phase delay line is suggested to be capable of replacing the complex phase shifter with a reference phase bit on a phased array antenna. For the purpose of achieving the broadband system, in addition to the broadband phase shifter, a wide-slot antenna with a ground reflector is utilized as an element antenna. Therefore, the phased array antenna system has achieved compact size, broad bandwidth, and wide steering angle, although it has low complexity and low fabrication cost. The 3${\times}$1 phased array antenna system has a compact size of 1.6 λ${\times}$ l.6 λ, which is the sufficient ground plane of the wide-slot antenna. Experimental results present that the S$\_$11/ has less than 15 dB within the band and its radiation patterns on an E-plane have the capability of steering an antenna beam from -29$^{\circ}$to +30$^{\circ}$.

Influence of lossy ground on impulse propagation in time domain for impulse ground penetrating radar (초광대역 임펄스 지반탐사레이더에서 지면의 영향에 따른 임펄스 전파 특성 연구)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper, influence of lossy ground and gap variation between lossy ground and UWB antenna on impulse propagation in time domain for impulse ground penetrating radar (GPR) is numerically and experimentally investigated. For this study, a novel planar UWB fat dipole antenna is developed. First, influence of lossy ground and gap variation between lossy ground and UWB antenna is simulated. For verification, a test field of sand and wet clay soil is built and using the developed dipole antenna, transmission behavior is investigated at the test field. With an aid of IDFT (inverse discrete Fourier transform), time domain impulse response for transmission coefficient measured and simulated in frequency domain is obtained. Measurement and simulation show that the frequency of maximum transmission coefficient and transmission coefficient are increased with higher dielectric constant and larger gap distance. In time domain, it is shown that for higher dielectric constant, the amplitude of the received signal in time domain is higher and reflected signals are seriously modified. Also, it is found that variation of gap between antenna and ground surface makes timing of peak value changed.

Reduced Electrical Coupling Effect and Miniaturized Antenna Using Quasi Möbius Strip with Via-Hole (Quasi Möbius Strip과 Via-Hole 구조를 응용한 선로결합 현상의 완화 및 소형화 설계)

  • Kim, Mi Jung;Park, Seong Gyoon;Ro, Soong Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.715-721
    • /
    • 2013
  • Minimization techniques are adaptations of Helical structure, Meta material, multi-layer structure etc. But, Helical structure is not suited to minimization technique of RF circuit having single resonant frequency. Because it generate resonant frequency following as rotation of circumference. Meta material and multi layer structure have weakness of expenditure and complex structure. In addition, conventional three dimensional M$\ddot{o}$bius Strip and planar M$\ddot{o}$bius Strip are not two dimensional planar M$\ddot{o}$bius Strip that has weakness of electrical coupling effect. Therefore, in this paper, we proposed miniaturized and reduced electrical coupling effect antenna by adaptation of Quasi M$\ddot{o}$bius Strip that topology is same as three dimensional M$\ddot{o}$bius Strip with Via-Hole structure. According to the simulation result, physical circumferential length is 1/3 minimized compared with conventional ring antenna under the same resonant frequency. In addition, coupling effect is not nearly generates near to the resonant frequency, 2.4GHz.

New Radiating Edges-Coupling (REC) Model for the Gap Between Two Rectangular Microstrip Patch Antennas (구형 마이크로스트립 안테나의 간격에 대한 새로운 Radiating Edges-Coupling(REC) 모델)

  • Hong, Jae-Pyo;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.56-65
    • /
    • 1989
  • In this paper, a new model is presented which characterizs the coupling of the radiating edges between two rectangular microstrip patch antennas. This model, namely Radiating Edges-Coupling (REC) model, is derived from the equivalent circuit of the slitted parallel-plate waveguide filled with homogeneous dielectric. Applying the REC model to two coupled rectangular microstrip patch antennas, we obtain numerical S-parameter values of |$S_{11}$| and |$S_{12}$|for the various coupling separations, $S_e$=0.5, 1.0, 1.5, and 2.0mm. Theoretical results are in fairly good agreement with experimental results.

  • PDF

Characteristics and Applications of the Tapered Feedline with Strong Coupling (강한 결합성을 갖는 테이퍼 라인을 이용한 공진기 급전선의 특성 및 응용)

  • 한상민;최준호;김영식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.878-883
    • /
    • 2003
  • New feeding structures using linearly and exponentially tapered lines to planar microstrip resonators are proposed. These can overcome the design problems from coupling losses and impedance mismatching by increasing the coupling efficiency. The variation of its feeding angle is evaluated for the insertion loss and bandwidth and the feedline length is optimized at ${\lambda}_g$/2. The ring resonators and patches fed by the tapered line have been designed and implemented. The experimental results show that the insertion loss is enhanced by about 7 dB. Both rings and antennas are better matched, without disturbing the single-mode resonance or distorting their radiation pattern