• Title/Summary/Keyword: 평택항

Search Result 102, Processing Time 0.017 seconds

Analysis of LDC Message Reception Performance of Korean eLoran Pilot Service according to Modulation Methods (첨단 지상파항법시스템(eLoran) 시범서비스의 LDC 메시지 변조기법에 따른 수신성능 분석)

  • Pyo-Woong, Son;Sak, Lee;Tae Hyun, Fang;Kiyeol, Seo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.525-529
    • /
    • 2022
  • In the eLoran system, the Loran Data Channel (LDC) is used to provide precise timing and positioning. The LDC message can be modulated with the Eurofix method, which modulates the transmission time of the 3rd-8th pulse not used for navigation, and the 9th pulse method, which modulates data using the 9th additional pulse after the existing 8 Loran pulses. In this paper, we analyzed the reception performance of the LDC message transmitted from the eLoran transmitter according to the modulation method. The eLoran testbed transmitter in Incheon was set to transmit LDC messages simultaneously with the 9th pulse modulation method and the Eurofix modulation method. Then, the LDC messages stored in the databases of the eLoran differential stations in Incheon and Pyeongtaek were analyzed in terms of the message reception rate according to the modulation method. Using the navigation aid management ship Inseong No. 1, the range of LDC message reception of actual sea users near Incheon Port was also analyzed. The results of this study are expected to be utilized in the full operational capability service after the eLoran pilot service.

Prioritizing Noxious Liquid Substances (NLS) for Preparedness Against Potential Spill Incidents in Korean Coastal Waters (해상 유해액체물질(NLS) 유출사고대비 물질군 선정에 관한 연구)

  • Kim, Young-Ryun;Choi, Jeong-Yun;Son, Min-Ho;Oh, Sangwoo;Lee, Moonjin;Lee, Sangjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.846-853
    • /
    • 2016
  • This study prioritizes Noxious Liquid Substances (NLS) transported by sea via a risk-based database containing 596 chemicals to prepare against NLS incidents. There were 158 chemicals transported in Korean waters during 2014 and 2015, which were prioritized, and then chemicals were grouped into four categories (with rankings of 0-3) based on measures for preparedness against incident. In order to establish an effective preparedness system against NLS spill incidents on a national scale, a compiling process for NLS chemicals ranked 2~3 should be carried out and managed together with an initiative for NLS chemicals ranked 0-1. Also, it is advisable to manage NLS chemicals ranked 0-1 after considering the characteristics of NLS specifically transported through a given port since the types and characteristics of NLS chemicals relevant differ depending on the port. In addition, three designated regions are suggested: 1) the southern sector of the East Sea (Ulsan and Busan); 2) the central sector of the South Sea (Gwangyang and Yeosu); and 3) the northern sector of the West Sea (Pyeongtaek, Daesan and Incheon). These regions should be considered special management sectors, with strengthened surveillance and the equipment, materials and chemicals used for pollution response management schemes prepared in advance at NLS spill incident response facilities. In the near future, the risk database should be supplemented with specific information on chronic toxicity and updated on a regular basis. Furthermore, scientific ecotoxicological data for marine organisms should be collated and expanded in a systematic way. A system allowing for the identification Hazardous and Noxious Substances (HNS) should also be established, noting the relevant volumes transported in Korean waters as soon as possible to allow for better management of HNS spill incidents at sea.