• Title/Summary/Keyword: 평창동

Search Result 24, Processing Time 0.02 seconds

Distribution and Stratigraphical Significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea (평창-정선 일대 "행매층"의 분포와 층서적 의의)

  • Kim, Namsoo;Choi, Sung-Ja;Song, Yungoo;Park, Chaewon;Chwae, Ueechan;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.383-395
    • /
    • 2020
  • The stratigraphical position of the Haengmae Formation can provide clues towards solving the hot issue on the Silurian formation, also known as Hoedongri Formation. Since the 2010s, there have been several reports denying the Haengmae Formation as a lithostratigraphic unit. This study aimed to clarify the lithostratigraphic and chronostratigraphic significance of the Haengmae Formation. The distribution and structural geometry of the Haengmae Formation were studied through geologic mapping, and the correlation of relative geologic age and the absolute age was performed through conodont biostratigraphy and zircon U-Pb dating respectively. The representative rock of the Haengmae Formation is massive and yellow-yellowish brown pebble-bearing carbonate rocks with a granular texture similar to sandstone. Its surface is rough with a considerable amount of pores. By studying the mineral composition, contents, and microstructure of the rocks, they have been classified as pebble-bearing clastic rocks composed of dolomite pebbles and matrix. They chiefly comprise of euhedral or subhedral dolomite, and rounded, well-sorted fine-grained quartz, which are continuously distributed in the study area from Biryong-dong to Pyeongan-ri. Bedding attitude and the thickness of the Haengmae Formation are similar to that of the Hoedongri Formation in the north-eastern area (Biryong-dong to Haengmae-dong). The dip-direction attitudes were maintained 340°/15° from Biryong-dong to Haengmae-dong with a thickness of ca. 200 m. However, around the southwest of the studied area, the attitude is suddenly changed and the stratigraphic sequence is in disorder because of fold and thrust. Consequently, the formation is exposed to a wide low-relief area of 1.5 km × 2.5 km. Zircon U-Pb age dating results ranged from 470 to 449 Ma, which indicates that the Haengmae Formation formed during the Upper Ordovician or later. The pebble-bearing carbonate rock consisted of clastic sediments, suggesting that the Middle Ordovician conodonts from the Haengmae Formation must be reworked. Therefore, the above-stated evidence supports that the geologic age of the Haengmae Formation should be Upper Ordovician or later. This study revealed that the Haengmae Formation is neither shear zone, nor an upper part of the Jeongseon Limestone, and is also not the same age as the Jeongseon Limestone. Furthermore, it was confirmed that the Haengmae Formation should be considered a unit of lithostratigraphy in accordance with the stratigraphic guide of the International Commission on Stratigraphy (ICS).

Contributions of Ionic Strength, pH, and Replacing Cations to the Cation Exchange Capacities of Soils (치환양(置換陽) ion의 종류(種類) 및 pH 가 토양(土壤)의 양(陽) ion 치환용량(置換容量)에 미치는 영향(影響))

  • Lim, Hyung-Sik;Kwag, Pan-Ju;Kim, Hee-Joong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.114-124
    • /
    • 1984
  • Various methods for measuring cation exchange capacity (CEC) of soil were compared and the contributions of ionic strength, pH and replacing cations to the CEC were investigated on Kangweon soils (Pyeongchang soils derived from lime stone : Chuncheon, Weonseong soils from alluvium : Cheolweon soils from basalt). The results were as follows : 1. The CEC measuring method using shaker and centrifuge at saturating, washing and replacing precesses, which are common in determining CEC of soils, appeared to be superior to the other methods using column, filter, or Brown method. 2. For all soil samples, the higher the ionic strength, the higher CEC value was obtained with the fewer saturating processes. However, using monovalent saturating ion on Anmi series soil derived from lime stone, the CEC value decreased when the ionic strength and the number of saturating process increased. 3. The CEC value generally increased with increasing pH. But, Chuncheon soil (Gyuam series from alluvium) having higher Al content showed the abrupt increases of CEC from pH 5.5 to pH 7.5. 4. About 70% of CEC of Kangweon soils were attributed to organic matter. 5. In determining CEC of soils, saturating with 0.5M divalent cation solution 2 to 3 times for Pyeongchang and Weonseong soil, 3 to 4 times for Cheolweon soil, and replacing with 0.25M divalent cation solution about 3 times are thought to be recommendable.

  • PDF

Suitability Classes for Italian Ryegrass (Lolium multiflorum Lam.) Using Soil and Climate Digital Database in Gangwon Province (강원도에서 토양과 기후 데이터베이스를 이용한 이탈리안 라이그라스의 재배 적지 구분)

  • Kim, Kyung-Dae;Sung, Kyung-Il;Jung, Yeong-Sang;Lee, Hyun-Il;Kim, Eun-Jeong;Nejad, Jalil Ghassemi;Jo, Mu-Hwan;Lim, Young-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.437-446
    • /
    • 2012
  • As a part of establishing suitability classification for forage production, use of the national soil and climate database was attempted for Italian ryegrass (Lolium multiflorum Lam., IRG) in Gangwon Province. The soil data base were from Heugtoram of the National Academy of Agricultural Science, and the climate data base were from the National Center for Agro-Meteorology, respectively. Soil physical properties including soil texture, drainage, slope available depth and surface rock contents, and soil chemical properties including soil acidity and salinity, organic matter content were selected as soil factors. The crieria and weighting factors of these elements were scored. Climate factors including average daily minimum temperature, average temperature from March to May, the number of days of which average temperature was higher than $5^{\circ}C$ from September to December, the number of days of precipitation and its amount from October to May of the following year were selected, and criteria and weighting factors were scored. The electronic maps were developed with these scores using the national data base of soil and climate. Based on soil scores, the area of Goseong, Sogcho, Gangreung, and Samcheog in east coastal region with gentle slope were classified as the possible and/or the proper area for IRG cultivation in Gangwon Province. The lands with gentle or moderate slope of Cheolwon, Yanggu, Chuncheon, Hweongseong, Pyungchang and Jeongsun in west side slope of Taebaeg mountains were classified as the possible and/or proper area as well. Based on climate score, the east coastal area of Goseong, Sogcho, Yangyang, Gangreung and Samcheog could be classified as the possible or proper area. Most area located on west side of the Taebaeg mountains were classified as not suitable for IRG production. In scattered area in Chuncheon and Weonju, where the scores exceeded 60, the IRG cultivation should be carefully managed for good production. For better application of electronic maps.

Regional Analysis of Forest Eire Occurrence Factors in Kangwon Province (강원도 지역 산불발생인자의 지역별 유형화)

  • 이시영;한상열;안상현;오정수;조명희;김명수
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.135-142
    • /
    • 2001
  • This study attempts to categorizes the factors of forest fire occurrences based on regional meteorologic data and general forest no characteristics of 18 cities and guns in Kangwon province. lo accomplish this goal, some statistical analyses such as analysis of variance, correspondence analysis and multidimensional scaling were adopted. To reveal the forest fires pattern of study region, a categorization process was conducted by employing the quantification approach which modified and quantified the metric-data of fire occurrence dates. Also, The fire occurrence similarity was compared by using multidimensional scaling for each study region. The major results are summarized as follows: It was found that the meteorological factors emerged as different to each region are average and maximum temperature, minimum dew point temperature and average and maximum wind speed. In the result of correspondence analysis representing relationships between fire causes and study regions, Kangrung is caused by arsonist, Chulwon, Hwachen and Yanggu caused by military factor, Sokcho and Chunchen caused by the debris burning, and Samchuk caused by general man-caused fires, respectively. Finally, the forest fire occurrence pattern of this study regions were divided into five areas such as, group I including Samchuk, Kangryung, Chunchen, Wonju, Hongchen and Hhoingsung, group II including Donghae, Taebaek, Yangyang and Pyongchang, group III including Jungsun, Chulwon and Whachen, group Ⅵ including Gosung, Injae and Yanggu, and group V including Shokcho and Youngwol.

  • PDF