• Title/Summary/Keyword: 평균 다공도

Search Result 134, Processing Time 0.027 seconds

Characteristics of Wall Pressure over Wall with Permeable Coating (침투성 코팅 처리된 벽면 주위의 벽 압력 특성)

  • Song, Woo-Seog;Shin, Seung-Yeol;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1055-1063
    • /
    • 2012
  • Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open-cell, urethane-type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber-frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low-frequency wall pressure spectral levels compared to a smooth wall.

Effect of Ether-Typed Alcohols on Pore Formation in Preparing an Asymmetrically Porous Polysulfone Membrane (다공성 폴리술폰 비대칭막 제조시 에테르형 알코올의 공경형성에 미치는 영향)

  • Choi, Yong-Jin;Kang, Byung-Chul
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.135-141
    • /
    • 2010
  • Various asymmetric Polysulfone membranes were prepared for a MBR process. Ether-typed alcohols (co-solvent) were added into a dope solution in order to control the pore size of membrane, whose effect on water permeability were investigated. Pore size of the prepared membranes were more affected by molecular-structure of co-solvent than by boiling point of theirs. With the increasing order of methoxy ($CH_3$-O-) < secondary propanol ($-CH_2$-CH(OH)$-CH_3$) < ethoxy ($CH_3-CH_2$-O-), water permeability of the prepared membrane increased. The phenomenon might attribute to the difference of molecularly steric hinderance of co-solvent (eg, Methoxy propanol, Ethoxy ethanol, Methoxy ethanol) in dope solution during the phase inversion. By the addition of ether typed alcohol into a dope solution, the pore size of MF (microfiltration) could be controlled. Also, Membrane prepared was applied to a MBR process and the system was stably operated for 2 months.

Vaccum Coating Synthesis and Characterization of the CdSe Nanostructures as a Semiconductor (화합물 반도체 CdSe 나노구조의 진공 코팅합성과 특성)

  • Chang, Ki-Seog;Hwang, Chang-Su;Park, Young-Heon
    • Korean Journal of Crystallography
    • /
    • v.15 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • In order to find the optical properties of CdSe thin film and CdSe nanostructure, the following experiments were performed: the CdSe wurtzite nanostructure was made by using 99.99% CdSe (Aldrich) powder with the $SiO_x$ substrates and the $AlO_x$ membranes in $7{\times}10^{-6}$ torr vacuum. (The average vacuum coating speed being 1 ${\AA}$/sec). The calculations obtained were about 200 nm diameter of nanotubes on the $AlO_x$ membranes and a crystallite size of about 2 nm on the $SiO_x$ substrates. These results were verified through the Scanning Electron Microscopy (SEM) analysis, thin film X-ray diffraction analysis and emission spectroscopy.

Removal of High Strength Hydrogen Sulfide Gas using a Bioreactor Immobilized with Acidithiobacillus ferrooxidans and a Chemical Absorption Scrubber (Acidithiobacillus ferrooxidans를 고정화한 생물반응기와 흡수탑을 이용한 고농도 황화수소 제거)

  • Ryu, Hui-Uk
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • To treat a waste gas containing a high strength H2S, the two-stages microbial desulfurization process that conof a bioreactor immobilized with Acidithiobacillusferrooxidans and a chemical absorption scrubber has was proposed. After 4 times repeat of batch cultures, the immobilized bioreactor has been stabilized and the rate of iron oxidation reached 0.89 kg . $m^{-3}{\cdot}m^{-1}$ at steady state. The two-stages microbial desulfurization prowas able to be operated for a long term over 54 days. The removal efficiencies of H2S were 97-99% at a space velocity of 70 h-I and a inlet concentration of 37,000 ppmv. The maximum elimination capacity of H2S was approximately 3.3 kg S . $m^{-3}{\cdot}m^{-1}$. In the bioractor, the concentrations of the $Fe^{3+}$ and the immobilzed cell were constantly maintained during the desulfurization.

Studies for Processing Condition Optimization and Physicochemical Property of Resistant Starch (난소화성 전분 제조공정의 최적화 및 이화학적 특성 연구)

  • 한명륜;김우경;강남이;이수정;김명환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1193-1199
    • /
    • 2003
  • As a result of resistant starch yield depending on heating temperature, moisture content, storage temperature and heating-cooling cycle with RSM (response surface methodology), high amylose corn starch (46%) was appeared higher than normal corn starch in the yield (22%). At the high amylose corn starch, optimum conditions for resistant starch formation were 6 times of heating-cooling cycle, 108$^{\circ}C$ heating temperature and 67% moisture content at the 2$0^{\circ}C$ storage temperature, which resulted in 25% yield with these experiment conditions. Affecting factor for the resistant starch formation was arranged according to heating -cooling cycle, moisture content, heating temperature and storage temperature. Raw corn starch granule was destructive and appeared a porous reticular structure by the resistant starch formation. Color became dark and increased yellowness by caramelization during heating processing. Heating-cooling processing was the result of decreased hardness, cohesiveness, springiness and gumminess.

A study of Immobilizing Heavy metals by pellets manufactured from Coal tailings and Iron oxide (선탄경석(選炭硬石)과 광산화물(鑛酸化物)로 제조(製造)한 담체(擔體)의 중금속(重金屬) 불용화(不溶化) 특성연구(特性硏究))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Porous pellets for immobilizing heavy metals were manufactured from coal tailings and iron oxide powder. Coal tailings was pulverized and mixed with iron oxide powder. The mixed powder was granulated into spherical pellets and roasted. Over $1100^{\circ}C$, residual coal in coal tailings reduced iron oxide to ZVI(Zero-Valent Iron). The pellets have 34.63% of porosity, 1.31 g/mL of bulk density, and 9.82.urn median pore diameter. The pellets were reacted with synthetic solutions containing each heavy metals: arsenic(V), copper(II), chrome(VI), and cadmium(II), respectively. On the test of immobilizing heavy metal, the pellets made at $1100^{\circ}C$ were superior to the other pellets made under $1000^{\circ}C$. Immobilizing over 99.9% of 10ppm heavy metal solutions required I hour for arsenic, 2 hours for chrome, and 4 hours for copper. However, immobilizing capacity of cadmium was inferior to that of the other metals and it was decreased in reversely proportion to initial concentration of the solutions.

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces (3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름)

  • Seo, Huijin;Ahn, Jinseong;Park, Junyong
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.264-268
    • /
    • 2021
  • In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.

A study on the acoustic performance of an absorptive silencer applying the optimal arrangement of absorbing materials (흡음재 최적 배치를 적용한 흡음형 소음기의 음향성능 연구)

  • Dongheon Kang;Haesang Yang;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.261-269
    • /
    • 2024
  • In this paper, the acoustic performance of an absorptive silencer was enhanced by optimizing an arrangement of multi-layered absorbing materials. The acoustic performance of the silencer was evaluated through transmission loss, and finite element method-based numerical analysis program was employed to calculate the transmission loss. Polyurethane, a porous elastic material frequently used in absorptive silencers, was employed as the absorbing material. The Biot-Allard model was applied, assuming that air is filled inside the polyurethane. By setting the frequency range of interest up to the 2 kHz and the acoustic performance affecting properties of the absorbing materials were investigated when it was composed as a single layer. And the acoustic performance of the silencers with the single and multi-layered absorbing materials was compared with each other based on polyurethane material properties. Subsequently, the arrangement of the absorbing materials was optimized by applying the Nelder-Mead method. The results demonstrated that the average transmission loss improved compared to the single-layered absorptive silencer.

A Study on the removal of nitrogen by combined nitrification and autotrophic denitrification (질산화와 무기영양 독립탈질화의 연계처리에 의한 질소제거에 관한 연구)

  • Han, Gee-Bong;Jeong, Da-Young;Woo, Mi-Hee;Kim, So-Yeon;Kim, Bio
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • Removal of nitrogen compound under nitrification related with denitrification by biofilm which developed on the porous media was investigated. With the investigation of $NH_4-N$ nitrification and autotrophic denitrification supplied with sulfur media as electron donor, conclusions were retrieved as follows. When $F/M_N$ ratio of $NH_4-N$ was increased from $0.0062-0.034gNH_4-N/g\;MLVSS{\cdot}day$ by the change of influent concentration and HRT the nitrification rate decreased as the increase of loading rate. Also under the same conditions of $F/M_N$ ratio, the alkalinity consumption rate of operation was higher at 8 hours of HRT than at 6 hours of HRT. Accordingly the influent loading rate variation by detention time with influent flow influenced more on the nitrification efficiency than the influent loading rate variation by the influent concentration did. Denitrification rate with various EBCT(Empty Bed Contact Time) showed average 25% at 8.4hrs of EBCT but sharply decreased average 5% at 4.6hrs of EBCT, so the operation would be more effective at above 8.4hrs of EBCT. Also denitrification rate was known to be adversely increased as $NO_3-N$ loading rate per unit volume of sulfur-media was decreased within the range of $0.5{\sim}2.0kgNO_3-N/m^3{\cdot}day$.

  • PDF

Synthesis of Cerium Doped Yttrium Aluminum Garnet Hollow Phosphor Based on Kirkendall Effect

  • Kim, Min-Jeong;Suphasis, Roy;Gong, Dal-Seong;Jeong, Hyeon-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.185-185
    • /
    • 2012
  • 중공 발광 나노 물질은 특유의 구조적 특성(낮은 밀도, 높은 비표면적, 다공성 물질, 낮은 열팽창계수 등)과 광학적 성질을 이용하여 디스플레이 패널, 광결정, 약물전달체, 바이오 이미징 라벨 등의 다양한 적용이 가능하다. 이러한 적용에 있어 균일한 크기와 형태의 중공 입자는 필수 조건으로 여겨진다. 지금까지 합성된 중공 발광 입자에는 BaMgAl10O17 : Eu2+-Nd3+, Gd2O3 : Eu3+, $EuPO_4{\cdot}H_2O$과 같은 것들이 있으나 크기 조절이 어렵고, 그 균일성이 확보되지 못하였다. 균일한 크기의 중공 발광 입자를 만들기 위해 SiO2나 emulsion을 템플릿으로 이용하여 황화카드뮴, 카드뮴 셀레나이드 중공 입자를 합성한 예가 있으나, 양자점의 독성으로 인하여 바이오분야 응용에는 적합하지 않다. YAG는 모체로써 형광체에서 가장 많이 이용되는 물질로, 화학적 안정성과 낮은 독성, 높은 양자 효율 등 많은 장점을 갖고 있다. 특히 세륨이 도핑된 YAG형광체의 경우 WLED, 신틸레이터, 바이오산업에 적용이 가능하다. 그러나 지금까지 중공 YAG:Ce3+형광체를 합성한 예가 없었다. 본 연구에서는 단분산 수화 알루미늄 (Al(OH)3) 입자 위에 세륨이 도핑 된 이트륨 베이직 카보네이트 ($Y(OH)CO_3$)를 균일하게 코팅한 후 열처리를 하여 균일한 크기의 Y3Al5O12:Ce3+(YAG) 중공 입자를 합성하였다. 열처리 온도에 따른 고분해능 투과 전자 현미경(HRTEM), X-선 회절(XRD), 고분해능 에너지 분광법(HREDX) 분석결과, 중공 YAG: Ce3+입자는 Kirkendall 효과에 의해 형성됨을 확인하였다. 전계방사형 주사 전자 현미경(FE-SEM) 측정을 통해, 열처리 후에도 입자의 크기와 형태가 균일함을 확인하였으며, 공초점 현미경 관찰을 통해 중공 형태를 명확히 확인 할 수 있었다. Photoluminescence (PL) 분광법과 형광 수명 이미징 현미경(FLIM)을 이용한 광 특성 분석결과, 합성된 입자는 400-500 nm에서 흡수 파장 (456 nm에서 최대 강도)과 500-700 nm 범위의 발광 파장(544 nm에서 최대 강도)을 나타냈고, 상용 YAG: Ce3+(70 ns)에 준하는 74 ns의 잔광 시간(decay time)이 측정되었다. 단분산 수화 알루미늄 입자의 크기를 조절하여 최종 합성된 YAG: Ce3+의 크기를 조절할 수 있었다. 지름 약 600 nm의 Al(OH)3를 사용한 경우, $1,300^{\circ}C$에서 열처리를 한 후 평균 지름 590 nm의 중공입자를 합성하였고, 약 170 nm의 Al(OH)3를 이용하여, 더 낮은 온도인 $1,100^{\circ}C$에서의 열처리를 통해 평균지름 140 nm의 중공 YAG: Ce3+입자를 합성하였다. 본 연구를 통하여 합성된 균일한 크기의 YAG 중공입자는 LED와 같은 광전변환 소자 및 다기능성 바이오 이미징 등의 나노바이오 소자 분야에 활용될 수 있음이 기대된다.

  • PDF