• 제목/요약/키워드: 평균유동해석

검색결과 330건 처리시간 0.115초

Analysis of Turbulent Velocity Fluctuations of Rectangular Shape of the Surface Roughness Change (직사각형 형상의 표면조도 변화에 의한 난류변동분 해석)

  • Oh, Dae-Kyun;Oh, Woo-Jun;Kim, Do-Jung;Lee, Gyoung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제17권2호
    • /
    • pp.167-172
    • /
    • 2011
  • In physical engineering, the turbulent flow on the surface roughness is very important. With the welding, design and paint, the hull surface roughness at each stage in the various aspects are important factors to be considered. In this study, the hull surface roughness geometry that was generalized to the PIV was applied to the tank test. The roughness of the surface changed the distance of the interval. Experimental velocity is Re = $1.1{\times}10^4$, Re = $2.0{\times}10^4$ and Re = $2.9{\times}10^4$. The turbulent intensity at the time-average were examined The roughness coefficient occurred with increasing turbulence intensities was stronger. The turbulence intensity away from the roughness in the shape was zero. The variation of turbulence intensity at the experimental flow conditions change was not affected.

Simulation of Unsaturated Fluid Flow on the 2nd Phase Facility at the Wolsong LILW Disposal Center (경주 중저준위방폐장 2단계 처분시설의 불포화 환경하에서 침투수 유동 해석)

  • Ha, Jaechul;Lee, Jeonghwan;Yoon, Jeonghyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제15권3호
    • /
    • pp.219-230
    • /
    • 2017
  • This study was conducted to predict and evaluate the uncertainty of safety after closure of the second phase surface disposal facility of the Gyeongju intermediate and low level repository in Korea. In this study, four scenarios are developed considering both intact and degraded states of multi-layered covers and disposal containers; also, the fluid flow by a rainfall into the disposal facility is simulated. The rainfall conditions are implemented based on the monthly average data of the past 30 years (1985~2014); the simulation period is 300 years, the management period regulated by institutional provisions. As a result of the evaluation of the basic scenario, in which the integrity of both of the containers and the covers is maintained, it was confirmed that penetration of rainfall does not completely saturate the inside of the disposal facility. It is revealed that the multiple cover layers and concrete containers effectively play the role of barrier against the permeation of rainfall.

A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements (실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석)

  • Lee, Deok Keun;Kong, Min Joon;You, Dong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제36권3호
    • /
    • pp.349-359
    • /
    • 2016
  • In order to analytically evaluate buffeting responses, the analysis of wind characteristics such as turbulence intensity, turbulence length, gust, roughness coefficient, etc must be a priority. Static aerodynamic force coefficients, flutter coefficients, structural damping ratios, aerodynamic damping ratios and natural frequencies affect the analytical responses. The bridge interested in this paper has being been used for 32 years. As the time passes, current terrain conditions around the bridge are different markedly from the conditions it was built 32 years ago. Also, wind environments were considerably varied by the climate change. For this reason, it is necessary to evaluate the turbulence intensity, length, spectrum and roughness coefficient of the bridge site from full-scale measurements using the structural health monitoring system. The evaluation results indicate that wind characteristics of bridge site is analogous to that of open terrain although the bridge is located on the coastal area. To calculate buffeting responses, the analysis variables such as damping ratios, static aerodynamic force coefficients and natural frequency were evaluated from measured data. The analysis was performed with regard to 4 cases. The evaluated variables from measured data are applied to the first and second analysis cases. And the other analysis cases were performed based on Design Guidelines for Steel Cable Supported Bridges. The calculated responses of each analysis cases are compared with the buffeting response measured at less than 25m/s wind speed. It is verified that the responses by the numerical analysis applying the estimated variables based on full-scale measurements are well agreed with the measured actual buffeting responses under wind speed 25m/s. Also, the extreme wind speed corresponding to a recurrence interval 200 years is derived from Gumbel distribution. The derived wind speed for return period of 200 years is 45m/s. Therefore the buffeting responses at wind speed 45m/s is determined by the analysis applying the estimated variables.

Application of Deconvolution Methods to Improve Seismic Resolution and Recognition of Sedimentary Facies Containing Gas Hydrates (동해 가스하이드레이트 퇴적상 해석 및 분해능 향상을 위한 디컨볼루션 연구)

  • Yi, Bo-Yeon;Lee, Gwang-Hoon;Kim, Han-Joon;Jeong, Gap-Sik;Yoo, Dong-Geun;Ryu, Byoung-Jae;Kang, Nyeon-Keon
    • Geophysics and Geophysical Exploration
    • /
    • 제13권4호
    • /
    • pp.323-329
    • /
    • 2010
  • Three deconvolution methods were applied to stacked seismic data obtained to investigate gas-hydrates in the Ulleung Basin, East Sea: (1) minimum-phase spiking deconvolution, (2) minimum-phase spiking deconvolution using an averaged wavelet from all traces, and (3) deterministic deconvolution using a wavelet with phases computed from well-logs. We analyzed the resolving property of these methods for lithological boundaries. The first deconvolution method increases temporal resolution but decreases lateral continuity. The second method shows, in an overall sense, similar results to the spiking deconvolution using a minimum phase wavelet for each trace; however, it results in a more consistent and continuous bottom-simulating reflector (BSR) and better resolved sub-BSR reflectors. The results from the third method reveal more detailed internal structures of debris-flow deposits and increased continuity of reflectors; in addition, the seafloor reflection and the BSR appear to have changed to a zero-phase waveform. These properties help more precisely estimate the distribution and reserves of gas hydrates in the exploration area by improving analysis of facies and amplitude of the BSR.

Effect of Joint Orientation Distribution on Hydraulic Behavior of the 2-D DFN System (절리의 방향분포가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Economic and Environmental Geology
    • /
    • 제49권1호
    • /
    • pp.31-41
    • /
    • 2016
  • A program code was developed to calculate block hydraulic conductivity of the 2-D DFN(discrete fracture network) system based on equivalent pipe network, and implemented to examine the effect of joint orientation distribution on the hydraulic characteristics of fractured rock masses through numerical experiments. A rock block of size $32m{\times}32m$ was used to generate the DFN systems using two joint sets with fixed input parameters of joint frequency and gamma distributed joint size, and various normal distributed joint trend. DFN blocks of size $20m{\times}20m$ were selected from center of the $32m{\times}32m$ blocks to avoid boundary effect. Twelve fluid flow directions were chosen every $30^{\circ}$ starting at $0^{\circ}$. The directional block conductivity including the theoretical block conductivity, principal conductivity tensor and average block conductivity were estimated for generated 180 2-D DFN blocks. The effect of joint orientation distribution on block hydraulic conductivity and chance for the equivalent continuum behavior of the 2-D DFN system were found to increase with the decrease of mean intersection angle of the two joint sets. The effect of variability of joint orientation on block hydraulic conductivity could not be ignored for the DFN having low intersection angle between two joint sets.

ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS (RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석)

  • Kim, T.S.;Lee, C.;Son, C.H.;Joh, C.Y.
    • Journal of computational fluids engineering
    • /
    • 제13권2호
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.

A Study on the Statistical Analysis of the Flow Characteristics of Droplet in the Cross Region of Twin Spray (이중분무 교차지역에서의 액적유동특성의 통계학적 분석에 관한 연구)

  • 조대진;윤석주;최태민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제18권3호
    • /
    • pp.635-644
    • /
    • 1994
  • This study investigated mainly on the flow characteristics of a droplet in the cross region of twin spray. The velocities of the droplet were measured along the axial and radial direction, and the flow characteristics of the droplet were statistically analyzed. For the statistical analysis, the probability density of the turbulent components has been studied, and then the Reynolds shear stress, the skewness and the flatness factors were calculated, and compared with the Gaussian value. Two pressure swirl stomizers were used for the twin spray system and kerosene was employed as the working liquid. 2-D PDA(particle dynamic analyzer) was used for the purpose of the measurement of droplet size and velocities. As a result, it was found that (1) the droplets collision was taken place strongly in the cross region. So, a large momentum loss of droplets due to the loss of natural movement direction was occurred, and momentum loss of radial direction was greater than that of axial direction. (2) The axial direction skewness factor approached to zero like the Gaussian distribution in the cross region of twin spray. (3) In the cross region of twin spray, the fluctuation instability of droplet was increased because of the development of the turbulence characteristics due to the droplet collision.

Thermal and Flow Analysis of the Flat Tube with Micro-Channels (미세유로를 갖는 납작관의 열·유동 해석)

  • Chung, Kilyoan;Lee, Kwan-Soo;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제23권8호
    • /
    • pp.978-986
    • /
    • 1999
  • In this study, the general thermal and flow characteristics of flat tube with micro-channels has been studied and the correlation of Nusselt number and friction factor is proposed. The optimal flat tube geometry is determined by optimal design process. It is assumed to be a three dimensional laminar flow in the analysis of thermal and flow characteristics. The periodic boundary condition is applied since the geometry of flat tube with micro-channels shows uniform cross-section in primary flow direction. Local Nusselt number is examined for thermal characteristics of each membrane, and module average Nusselt number and friction factor are calculated to determine the characteristics of the heat transfer and pressure drop in overall flat tube with microchannels. The correlations between Nusselt number and friction factor are given by Reynolds number, aspect ratio of membranes, and the width of flat tube. ALM (Augmented Lagrangian Multiplier) method is applied to the correlations to determine an optimal shape of flat tube. It is shown that the optimal aspect ratio of flat tube is approximately 1.0, irrespective of the width of flat tube and Reynolds number.

Analysis of the three-dimensional Steady Flow through A Multi-blade Centrifugal Fan (다익송풍기 내부 3차원 정상유동의 수치해석)

  • Seo, Seoung-Jin;Chen, Xi;Kim, Kwang-Yong;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • 제3권1호
    • /
    • pp.19-27
    • /
    • 2000
  • A numerical study is presented for analysis of three-dimensional incompressible turbulent flows in a multi-blade centrifugal fan. Reynolds-averaged Navier-Stokes equations with a standard $k-{\espilon}$ turbulence model are discretized with finite volume approximations. The computational area is divided into three blocks; inlet core, impeller and scroll parts, which are linked by a multi-block method. The flow inside of the fan is regarded as steady flow, and the mathematical models for the impeller forces were established from a cascade theory and measured data. Empirical coefficients are obtained comparing between computational and experimental results for the case without scroll, and are employed to simulate the flow through the impeller with scroll. In comparisons with experimental data, the validity of the mathematical models for the impeller forces was examined. The characteristics of the flow in the scroll were also discussed.

  • PDF

A Study on Aerodynamic Design and Flow Characteristics of a Centrifugal Compressor for SOFC-Gas Turbine Hybrid System (SOFC-GT 혼합시스템용 원심압축기 공력설계 및 유동특성 연구)

  • Choi, Jae-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.284-291
    • /
    • 2008
  • This study presents an aerodynamic design and numerical analysis of a centrifugal compressor in gas turbines for SOFC-gas turbine hybrid system application. Total-to-total pressure ratio of the compressor is 3.6:1 that could be used widely for small and large SOFC-gas turbine systems. The compressor consists of a centrifugal impeller and a wedge diffuser. Conceptual design and aerodynamic design with mean line analysis and quasi-3D analysis are performed, and aerodynamic parameters as well as design variables are discussed from the design results. A numerical analysis based on the Reynolds-averaged Navier-Stokes equation was performed for the flow analysis of the compressor. The results show that the centrifugal compressor designed meets the design target, and the aerodynamic parameters and results of the compressor can be used for the aerodynamic design of centrifugal compressors and the feasibility study of SOFC-gas turbine system design.