• Title/Summary/Keyword: 평균비절삭저항

Search Result 3, Processing Time 0.016 seconds

Development of mean specific cutting pressure model for cutting force analysis in the face milling process (정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발)

  • Lee, B.C.;Hwang, J.C.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-25
    • /
    • 1994
  • In order to design and improve a new machine tool, there is a need for a better understanding of the cutting force. In this paper, the computer programs were developed to predict not only the mean specific cutting pressure but also the cutting force. The simulated cutting forces in X, Y, Z directions resulted form the developed cutting force model were compared with the measured cutting forces in the time and frequency domains. The simulated cutting forces resulted from the new cutting force model have a good agreement with the measured force in comparison with these resulted from the existing cutting force model.

  • PDF

Development of Dynamic Cutting Force Model by Mean Specific Cutting Pressure in Face Milling Process (평균 비절삭저항을 이용한 정면 밀리의 동절삭력 모델 개발)

  • Lee, Byung-Cheol;Baek, Dae-Kyun;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.39-52
    • /
    • 1995
  • In order to design and improve a new machine tool, there is a need for a better understanding of the dynamic cutting force. In this paper, the computer programs were developed to predict the dynamic cutting force by the mean specific cutting pressure in the face milling process. The simulated cutiing forces in X, Y, Z directions resulted from the developed dynamic cutting force model are compared with the measured cutiing forces in the time and frequency domains. The simulated cutting force model have a good agreement with the measured forces in comparison with those resulted from the existing cutting force model.

  • PDF

Effects of Cutter Runout on End Milling Forces I-Up Eng Milling- (엔드밀링 절삭력에 미치는 공구형상오차 I- 상향 엔드밀링 -)

  • Lee, Yeong-Mun;Yang, Seung-Han;Song, Tae-Seong;Gwon, O-Jin;Baek, Seung-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.63-70
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented in up end milling process using measured cutting forces. The average specific cutting resistance, Ka is defined as the main cutting force component divided by the modified chip section area. Ka value becomes smaller as the helix angle increases from $30^circC \;to\;40\circC$. But it becomes larger as the helix angle increases from $40^\circ$to 50 . On one hand, the Ka value shows a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.