• Title/Summary/Keyword: 평가기준 추출

Search Result 667, Processing Time 0.033 seconds

A Study on 3D-Transformation of Krazovsky Coordinate System (Krassovsky 타원체 좌표의 3차원 변환에 대한 연구)

  • 김감래;전호원;현민호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.117-123
    • /
    • 2001
  • Requiring topographic information of map due to retaining russia map, which needed accuracy analysis of russia map and relation between its and south korea's map. In order to obtain exact location information from the map which has different reference datum. We have to operate coordinate transformation between maps applied different ellipsoid. In this paper, in order to evaluate accuracy between two maps applied different ellipsoid, it has studied theory of map projection and coordinate transformation. Then, select each point which can be recognized on the two maps for accuracy evaluation. After obtaining coordinate values for each point of same area, it is evaluated accuracy each geodetic coordinate and each TM coordinate. As a result of this study, the maps which have different reference datum could be used if the exact origin shift could be obtained and applied.

  • PDF

Quantitative Analysis of ${\gamma}-oryzanol$ in Rice Bran (미강의 약리성분 감마-오리자놀의 정량)

  • Kwak, Tae-Soon;Park, Hee-Juhn
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.2
    • /
    • pp.113-118
    • /
    • 1997
  • Phytochemical analysis on rice bran and its pitch was performed by the tool of TLC, UV- and IR-spetroscopy, so that it was found that they contained ${\gamma}-oryzanol$ and free sterol. GC-MS analysis of free sterol revealed that it was composed of ${\beta}-sitosterol$, campesterol and stigmasterol. Successive phytochemical analysis of ${\gamma}-oryzanol$ revealed that it was composed of ferulic acid ester of triterpene and sterol, respectively. Triterpene moieties of ${\gamma}-oryzanol$ were identified as follows: cycloartanol, cycloartenol, 24-methylenecycloartanol and unknown triterpene; And sterol moieties were found to be identical with free sterols. In addition, characteristic absorption band in UV spectrum (220-340 nm) was exclusively due to ${\gamma}-oryzanol$. Thus, it was suggested that rice brans of nearly all species of Oryza sativa can be quantitatively analyzed by UV absorption spectrometry, even when water soluble pigments was contained in the rice bran.

  • PDF

Adaptive weight approach for stereo matching (적응적 가중치를 이용한 스테레오 정합 기법)

  • Yoon, Hee-Joo;Hwang, Young-Chul;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.73-76
    • /
    • 2008
  • We present a area-based method for stereo matching using varying weights. A central problem in a area-based stereo matching is different result from selecting a window size. Most of the previous window-based methods iteratively update windows. However, the iterative methods very sensitive the initial disparity estimation and are computationally expensive. To resolve this problem, we proposed a new function to assign weights to pixels using features. To begin with, we extract features in a given stereo images based on edge. We adjust the weights of the pixels in a given window based on correlation of the stereo images. Then, we match pixels in a given window between the reference and target images of a stereo pair. The proposed method is compared to existing matching strategies using both synthetic and real images. The experimental results show the improved accuracy of the proposed method.

  • PDF

Forecasting monthly precipitation of Gyeongan-cheon watershed using teleconnection with global climate indices (글로벌 기후지수와의 원격상관을 이용한 경안천 유역의 월 강수량 예측)

  • Kim, Chul-gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam-won;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.314-314
    • /
    • 2019
  • 가뭄대응 및 이수분야 활용을 위한 장기 기상예측정보 확보를 위해, 경안천 유역을 대상으로 전구기후지수의 원격상관 패턴을 이용하여 통계적 기반의 다중회귀모형을 구성하고 월 강수량의 예측가능성을 평가하였다. 예측인자로서 미국 NOAA에서 제공하는 기후지수 중 총 37개의 지수에 대해 1948~2018년의 월 자료를 이용하였으며, 예측대상인 경안천 월 강수량은 1966~2018년의 유역평균 강수량 자료를 활용하였다. 각 기후지수별 1~24개월 선행자료와 예측대상년도 월 강수량과의 상관분석을 통해 상관성이 높은 기후자료를 선별하여 다중회귀모형의 독립변수로 적용하였다. 예측대상년도를 기준으로 과거 40년의 자료(월 강수량 및 월 기후지수)를 보정자료와 검정자료로 구분(20년씩 무작위로 추출)하고, 보정기간에 대해 도출된 회귀모형 중 검정기간을 대상으로 예측성이 좋은 100개의 회귀모형을 선별하여 예측대상기간에 대한 예측모형으로 활용하였다. 2006~2018년에 대해 전망기간별(1개월, 3개월, 6개월, 12개월)로 각 월별 100개 회귀모형으로 부터의 예측값(예측치의 범위)이 실제 관측치를 포함하는 경우를 월별로 분석한 결과 10월이 가장 높고(83%), 11월(81%), 1월(79%), 8월(77%), 6월(75%), 12월(71%)의 순으로 높게 나타났으며, 상대적으로 7월(29%)과 3월(44%)의 예측성이 낮은 것으로 나타났다. 통계적 모형의 특성상 전망기간에 따른 예측의 정확도는 비례하지 않았다. 예측치의 편차는 크지 않지만 예측성이 낮게 나타나는 기간(3월, 2월)과 예측성은 높지만 예측범위가 크게 나타나는 기간(8월, 6월)에 대해서는 예측모형의 재검토 및 다양한 규모의 유역에 대한 적용을 통해 예측인자 추가 및 보완 등을 수행할 예정이다.

  • PDF

Development of satellite precipitation process module based on QGIS (QGIS 기반 위성강수 처리 모듈 개발)

  • Kim, Joo Hun;Kim, Kyeong Tak;Jo, Minhye
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.60-60
    • /
    • 2019
  • OECD 발표에 의하면 물산업 관련 인프라 투자 전망은 전세계 GDP 대비 2010~2020년 약 1.01%에서 2020~2030년 약 1.03%로 확대될 전망으로 다른 통신, 전력, 철도 인프라 투자수요보다 많을 것으로 전망하고 있다(파이넨셜 뉴스, 2013.3.21.). 우리나라는 2005년 베트남 홍강종합개발사업을 시작으로 2015년 기준으로 세계 35개국에 진출하고 있다. 그러나 대부분의 물 산업 진출 대상 국가는 미계측 유역이 많고 지상에서 계측된 수문 자료가 부족한 실정이다. Namgung and Lee(2014)에 의하면 네팔의 수력발전소 건설에 관측된 강우량 자료가 없어 발전소 하류 10km 지점의 유하량 자료를 이용하여 자료의 정확도 검증을 대신하여 적용한 바 있다. 이와 같이 계측자료가 없거나 부족한 지역에 대하여 기상 위성을 이용하여 추정된 강수량 자료가 해당 지역의 강수 특성을 파악하는데 중요한 자료로 이용될 수 있다. 글로벌 위성 기반의 강수량 관측에 대한 역사는 1979년에 IR방법에 의해 위성으로부터 강우자료를 유도하는 개념이 도입된 이후 1987년 다중 채널의 마이크로파(MW) 복사계를 이용한 방법, 이후 두 IR과 MW를 혼합한 방법에서, 1997년 TRMM위성의 PR(Precpipitation Radar)의 레이더를 이용하는 방법, 그리고 2014년 GPM 핵심 위성(GPM Core Observatory)에 탑재된 Dual PR에 의한 방법으로 위성강수의 정확도를 매우 높여가고 있다. 본 연구는 대표적인 위성강수인 IMERG(Integrated MultisatellitE Retrievals for GPM)의 활용성을 높이기 위해 QGIS 기반의 위성강수 전처리 모듈을 개발하는 것을 목적으로 하고 있다. 위성강수를 활용하기 위해서는 위성강수의 정확도 평가가 선행되어야 한다. 본 연구를 통해 2017년 7월 중부지방 및 충청도 지방에 내린 강수자료를 비교한 결과 상관계수가 약 0.7정도로 상관성이 높은 것으로 분석되었고, 2018년 8월 9호 태풍 솔릭(Solik)에 대한 1시간의 시간해상도 분석 결과 상관계수 0.624로 위성강수의 활용성이 있음을 입증하였다. IMERG 위성강수의 활용성을 높이기 위하여 HDF5 포맷의 원시자료를 활용이 용이한 Tiff 로 변환하는 기능에서부터 특정범위 및 특정지점 추출 기능, Resampling 기능 등을 포함하는 전처리 모듈을 개발하였다.

  • PDF

An Convergence Study on the Characteristics of the Dental Arch Development According to the Causes of Short Stature (저신장의 원인에 따른 치열궁 발육의 특성에 대한 융합연구)

  • Kang, Sohee;Son, Hwa-Kyung;Lee, Hee-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.89-96
    • /
    • 2021
  • This study is aimed to establish the direction of orthodontic treatment by analyzing the differences in the dental arch development due to the cause of short stature. Dental diagnostic tests were conducted on patients who were diagnosed with short stature. Idiopathic short statured children were classified through the paired sampling based on the age and gender of a short statured children with growth hormone shortage. Control groups were classified using same method as above, after selecting candidates with an arch length of less than 3mm and malocclusion. In conclusion, short statured children with growth hormone shortage or idiopathic had the higher rate of crowding and the small value of overbite compared to normal children. Therefore orthodontic treatment for short statured children needs treatment plan included evaluation for Arch length discrepancy to treat a crowding early. This study will provide important data for successful orthodontic treatment according to the characteristics of dental occlusion of short statured children.

Study of Facial Expression Recognition using Variable-sized Block (가변 크기 블록(Variable-sized Block)을 이용한 얼굴 표정 인식에 관한 연구)

  • Cho, Youngtak;Ryu, Byungyong;Chae, Oksam
    • Convergence Security Journal
    • /
    • v.19 no.1
    • /
    • pp.67-78
    • /
    • 2019
  • Most existing facial expression recognition methods use a uniform grid method that divides the entire facial image into uniform blocks when describing facial features. The problem of this method may include non-face backgrounds, which interferes with discrimination of facial expressions, and the feature of a face included in each block may vary depending on the position, size, and orientation of the face in the input image. In this paper, we propose a variable-size block method which determines the size and position of a block that best represents meaningful facial expression change. As a part of the effort, we propose the way to determine the optimal number, position and size of each block based on the facial feature points. For the evaluation of the proposed method, we generate the facial feature vectors using LDTP and construct a facial expression recognition system based on SVM. Experimental results show that the proposed method is superior to conventional uniform grid based method. Especially, it shows that the proposed method can adapt to the change of the input environment more effectively by showing relatively better performance than exiting methods in the images with large shape and orientation changes.

Estimating speech parameters for ultrasonic Doppler signal using LSTM recurrent neural networks (LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정)

  • Joo, Hyeong-Kil;Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.433-441
    • /
    • 2019
  • In this paper, a method of estimating speech parameters for ultrasonic Doppler signals reflected from the articulatory muscles using LSTM (Long Short Term Memory) RNN (Recurrent Neural Networks) was introduced and compared with the method using MLP (Multi-Layer Perceptrons). LSTM RNN were used to estimate the Fourier transform coefficients of speech signals from the ultrasonic Doppler signals. The log energy value of the Mel frequency band and the Fourier transform coefficients, which were extracted respectively from the ultrasonic Doppler signal and the speech signal, were used as the input and reference for training LSTM RNN. The performance of LSTM RNN and MLP was evaluated and compared by experiments using test data, and the RMSE (Root Mean Squared Error) was used as a measure. The RMSE of each experiment was 0.5810 and 0.7380, respectively. The difference was about 0.1570, so that it confirmed that the performance of the method using the LSTM RNN was better.

Scoring Method of Fingerprint Image Quality using Classified Block-level Characteristics (블록 레벨의 분류 특성을 이용한 지문 영상의 품질 측정 방법)

  • Moon, Ji-Hyun;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.2
    • /
    • pp.29-40
    • /
    • 2007
  • The purpose of this research is to propose a method for scoring the quality of a fingerprint image using the local information derived from the fingerprint image. In previous works for the quality measuring, most of the quality scores are related to the performance of a matching algorithm, and this makes the quality result more subjective. The quality score of a fingerprint image proposed in this work is sensor-independent, source-independent and matcher-independent one, and this concept of fingerprint sample quality results in effective improvement of the system performance. In this research, a new definition of fingerprint image quality and a new method for measuring the quality are proposed. For the experiments, several sub-databases from FVCs are used and the proposed method showed reasonable results for the test database. The proposed method can be used in various systems for the numerous purposes since the quality scores generated by the proposed method are based on the idea that the quality of fingerprint should be sensor-independent, source-independent and matcher-independent.

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.