• Title/Summary/Keyword: 평가기준 추출

Search Result 667, Processing Time 0.028 seconds

Automatic Generation of 3D Building Models using a Draft Map (도화원도를 이용한 3차원 건물모델의 자동생성)

  • Kim, Seong-Joon;Min, Seong-Hong;Lee, Dong-Cheon;Park, Jin-Ho;Lee, Im-Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.3-14
    • /
    • 2007
  • This study proposes an automatic method to generate 3D building models using a draft map, which is an intermediate product generated during the map generation process based on aerial photos. The proposed method is to generate a terrain model, roof models, and wall models sequentially from the limited 3D information extracted from an existing draft map. Based on the planar fitting error of the roof corner points, the roof model is generated as a single planar facet or a multiple planar structure. The first type is derived using a robust estimation method while the second type is constructed through segmentation and merging based on a triangular irregular network. Each edge of this roof model is then projected to the terrain model to create a wall facet. The experimental results from its application to real data indicates that the building models of various shapes in wide areas are successfully generated. The proposed method is evaluated to be an cost and time effective method since it utilizes the existing data.

  • PDF

Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model (Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘)

  • Moon, Sun-Kuk;Choi, Tack-Sung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.965-974
    • /
    • 2007
  • In this paper, we proposed the feature selection algorithm for multi-class genre classification. In our proposed algorithm, we developed GMM separation score based on Gaussian mixture model for measuring separability between two genres. Additionally, we improved feature subset selection algorithm based on sequential forward selection for multi-class genre classification. Instead of setting criterion as entire genre separability measures, we set criterion as worst genre separability measure for each sequential selection step. In order to assess the performance proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigate classification performance by GMM classifier and k-NN classifier for selected features using conventional algorithm and proposed algorithm. Proposed algorithm showed improved performance in classification accuracy up to 10 percent for classification experiments of low dimension feature vector especially.

A New Statistical Sampling Method for Reducing Computing time of Machine Learning Algorithms (기계학습 알고리즘의 컴퓨팅시간 단축을 위한 새로운 통계적 샘플링 기법)

  • Jun, Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.171-177
    • /
    • 2011
  • Accuracy and computing time are considerable issues in machine learning. In general, the computing time for data analysis is increased in proportion to the size of given data. So, we need a sampling approach to reduce the size of training data. But, the accuracy of constructed model is decreased by going down the data size simultaneously. To solve this problem, we propose a new statistical sampling method having similar performance to the total data. We suggest a rule to select optimal sampling techniques according to given data structure. This paper shows a sampling method for reducing computing time with keeping the most of accuracy using cluster sampling, stratified sampling, and systematic sampling. We verify improved performance of proposed method by accuracy and computing time between sample data and total data using objective machine learning data sets.

Improving Correctness in the Satellite Remote Sensing Data Analysis -Laying Stress on the Application of Bayesian MLC in the Classification Stage- (인공위성 원격탐사 데이타의 분석 정확도 향상에 관한 연구 -분류과정에서의 Bayesian MIC 적용을 중심으로-)

  • 안철호;김용일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 1991
  • This thesis aims to improve the analysis accuracy of remotely sensed digital imagery, and the improvement is achieved by considering the weight factors(a priori probabilities) of Bayesian MLC in the classification stage. To be concrete, Bayesian decision theory is studied from remote sensing field of view, and the equations in the n-dimensional form are derived from normal probability density functions. The amount of the misclassified pixels is extracted from probability function data using the thres-holding, and this is a basis of evaluating the classification accuracy. The results indicate that 5.21% of accuracy improvement was carried out. The data used in this study is LANDSAT TM(1985.10.21 ; 116-34), and the study area is within the administrative boundary of Seoul.

  • PDF

A Comparison of Performance between STMP/MST and Existing Spatio-Temporal Moving Pattern Mining Methods (STMP/MST와 기존의 시공간 이동 패턴 탐사 기법들과의 성능 비교)

  • Lee, Yon-Sik;Kim, Eun-A
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.49-63
    • /
    • 2009
  • The performance of spatio-temporal moving pattern mining depends on how to analyze and process the huge set of spatio-temporal data due to the nature of it. The several method was presented in order to solve the problems in which existing spatio-temporal moving pattern mining methods[1-10] have, such as increasing execution time and required memory size during the pattern mining, but they did not solve properly yet. Thus, we proposed the STMP/MST method[11] as a preceding research in order to extract effectively sequential and/or periodical frequent occurrence moving patterns from the huge set of spatio-temporal moving data. The proposed method reduces patterns mining execution time, using the moving sequence tree based on hash tree. And also, to minimize the required memory space, it generalizes detailed historical data including spatio-temporal attributes into the real world scopes of space and time by using spatio-temporal concept hierarchy. In this paper, in order to verify the effectiveness of the STMP/MST method, we compared and analyzed performance with existing spatio-temporal moving pattern mining methods based on the quantity of mining data and minimum support factor.

  • PDF

Determining Method of Factors for Effective Real Time Background Modeling (효과적인 실시간 배경 모델링을 위한 환경 변수 결정 방법)

  • Lee, Jun-Cheol;Ryu, Sang-Ryul;Kang, Sung-Hwan;Kim, Sung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • In the video with a various environment, background modeling is important for extraction and recognition the moving object. For this object recognition, many methods of the background modeling are proposed in a process of preprocess. Among these there is a Kumar method which represents the Queue-based background modeling. Because this has a fixed period of updating examination of the frame, there is a limit for various system. This paper use a background modeling based on the queue. We propose the method that major parameters are decided as adaptive by background model. They are the queue size of the sliding window, the sire of grouping by the brightness of the visual and the period of updating examination of the frame. In order to determine the factors, in every process, RCO (Ratio of Correct Object), REO (Ratio of Error Object) and UR (Update Ratio) are considered to be the standard of evaluation. The proposed method can improve the existing techniques of the background modeling which is unfit for the real-time processing and recognize the object more efficient.

Study on Decision for Landslide Hazard Areas by Using GIS (지리정보시스템을 이용한 산사태 위험지 판정에 관한 연구)

  • Choo, Tai Ho;Yoon, Hyeon Cheol;Bae, Chang Yeon;Son, Hee Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5310-5317
    • /
    • 2014
  • Landslides occur in Korea every year because it has numerous mountainous regions and approximately two-thirds of the annual rainfall falls in Summer. Therefore, it is important to predict potential areas of landslides and minimize the damage in advance to protect property and human life. Therefore, in the present study, the potential danger areas were extracted from a digital map, digital forest map, digital forest site environmental map, and digital geologic map to estimate the landslide hazard. In addition, the assessment of landslide danger was analyzed by first and second estimations based on the criteria from the Korea Forest Research Institute using a GIS technique, which was finally judged by a field investigation.

Side Face Features' Biometrics for Sasang Constitution (사상체질 판별을 위한 측면 얼굴 이미지에서의 특징 검출)

  • Zhang, Qian;Lee, Ki-Jung;WhangBo, Taeg-Keun
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.155-167
    • /
    • 2007
  • There are four types of human beings according to the Sasang Typology, Oriental medical doctors frequently prescribe healthcare information and treatment depending on one's type, The feature ratios (Table 1) on the human face are the most important criterions to decide which type a patient is. In this paper, we proposed a system to extract these feature ratios from the people's side face, There are two challenges in acquiring the feature ratio: one that selecting representative features; the other, that detecting region of interest from human profile facial image effectively and calculating the feature ratio accurately. In our system, an adaptive color model is used to separate human side face from background, and the method based on geometrical model is designed for region of interest detection. Then we present the error analysis caused by image variation in terms of image size and head pose, To verify the efficiency of the system proposed in this paper, several experiments are conducted using about 173 korean's left side facial photographs. Experiment results shows that the accuracy of our system is increased 17,99% after we combine the front face features with the side face features, instead of using the front face features only.

  • PDF

Road Tracking based on Prior Information in Video Sequences (비디오 영상에서 사전정보 기반의 도로 추적)

  • Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • In this paper, we propose an approach to tracking road regions from video sequences. The proposed method segments and tracks road regions by utilizing the prior information from the result of the previous frame. For the efficiency of the system, we have a simple assumption that the road region is usually shown in the lower part of input images so that lower 60% of input images is set to the region of interest(ROI). After initial segmentation using flood-fill algorithm, we merge neighboring regions based on color similarity measure. The previous segmentation result, in which seed points for the successive frame are extracted, is used as prior information to segment the current frame. The similarity between the road region of the previous frame and that of the current frame is measured by the modified Jaccard coefficient. According to the similarity we refine and track the detected road regions. The experimental results reveal that the proposed method is effective to segment and track road regions in noisy and non-noisy environments.

A Sampling based Pruning Approach for Efficient Angular Space Partitioning based Skyline Query Processing (효율적인 각 기반 공간 분할 병렬 스카이라인 질의 처리를 위한 데이터 샘플링 기반 프루닝 기법)

  • Choi, Woo-Sung;Min, Jong-Hyeon;Chung, Jaehwa;Jung, SoonYoung
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.55-58
    • /
    • 2016
  • 스카이라인 질의란 다수의 선택지 중 '선호될 만한(preferable)' 선택지를 요청하는 질의이다. 사용자가 검토해야하는 선택지의 수를 대폭 감소시키는 스카이라인 질의는 데이터가 폭증하는 빅데이터 환경에서 매우 유용하게 활용된다. 이러한 배경에서 대용량 데이터에 대한 스카이라인 질의를 분산 병렬 처리하는 기법이 각광을 받고 있으며, 특히 맵리듀스(MapReduce) 기반의 분산 병렬 처리 기법 연구가 활발히 진행 중이다. 맵리듀스 기반 알고리즘의 병렬성 제고를 위해서는 부하 불균등 문제 중복 계산 문제 과다한 네트워크 비용 발생 문제를 해소해야 한다. 최근 각 기반 공간분할 기법을 사용하여 부하 불균등 문제와 중복 계산 문제를 해소하는 맵리듀스 기반 스카이라인 질의 처리 기법이 제안되었으나 해당 기법은 네트워크 비용 관점에서 최적화되어있지 않다. 본 논문에서는 부하 불균등 문제와 중복 계산 문제를 해소하면서도 프루닝을 통해 네트워크 비용 절감 시킬 수 있는 새로운 맵리듀스 기반 병렬 스카이라인 질의 처리 기법인 MR-SEAP(MapReduce sample Skyline object Equality Angular Partitioning)을 제안한다. MR-SEAP에서는 데이터를 샘플링하여 샘플 스카이라인 객체를 추출한 뒤 해당 객체들을 균등 분배하는 각도를 기준으로 공간을 분할하여 스카이라인 질의를 병렬 계산하되, 샘플 스카이라인을 이용하여 다수의 객체를 사전에 프루닝함으로써 네트워크 비용을 절감한다. 본 논문에서는 다양한 데이터 수량(cardinality) 및 분포(distribution)에 따른 제안 기법의 성능을 실험 평가함으로써 제안 기법의 우수성을 검증한다.