• Title/Summary/Keyword: 평가규칙

Search Result 1,025, Processing Time 0.027 seconds

The Establishment of BPR for National Spatial Data Infrastructure Quality Management System (국가공간정보통합체계 품질관리시스템 구축을 위한 BPR 수립)

  • Youn, Jun Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.81-89
    • /
    • 2014
  • In Korea, National spatial data infrastructure has implemented in order to integrated manage and share the national spatial information producted by public agencies and local governments. The necessities of systematic quality management are raised, because information, which is generated by different agencies, is integrative managed by national level. In this paper, the establishment of BPR(Business Process Reengineering) for national spatial data infrastructure quality management system. Quality management business is defined as quality management object definition, quality measuring, evaluation and analysis, and quality enhancement process. Next, activities for each process are designed. For the quality management business, business rule(BR) is required for determining error. We derive the BR for six objects(legal-dong, railway boundary, railway centerline, road boundary, road centerline, building) among the basic spatial information. Other information's BR can be generated by using the derivation method described in this paper. Based on the BPR of this paper and derived BR, national spatial data infrastructure quality management system can be implemented in the future.

Video Event Detection according to Generating of Semantic Unit based on Moving Object (객체 움직임의 의미적 단위 생성을 통한 비디오 이벤트 검출)

  • Shin, Ju-Hyun;Baek, Sun-Kyoung;Kim, Pan-Koo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 2008
  • Nowadays, many investigators are studying various methodologies concerning event expression for semantic retrieval of video data. However, most of the parts are still using annotation based retrieval that is defined into annotation of each data and content based retrieval using low-level features. So, we propose a method of creation of the motion unit and extracting event through the unit for the more semantic retrieval than existing methods. First, we classify motions by event unit. Second, we define semantic unit about classified motion of object. For using these to event extraction, we create rules that are able to match the low-level features, from which we are able to retrieve semantic event as a unit of video shot. For the evaluation of availability, we execute an experiment of extraction of semantic event in video image and get approximately 80% precision rate.

  • PDF

Design of Fuzzy Inference-based Deterioration Diagnosis System through Different Image (차 영상을 통한 퍼지 추론 기반 열화 진단 시스템 설계)

  • Kim, Jong-Bum;Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.57-62
    • /
    • 2015
  • In this paper, we design fuzzy inference-based deterioration diagnosis system through different image for rapid as well as efficient diagnosis of electrical equipments. When the deterioration diagnosis of the electrical equipment starts, abnormal state of assigned area is detected by comparing with the temperature of the first normal state of the area. Deterioration state of detected area is diagnosed by using fuzzy inference algorithm. In the fuzzy inference algorithm, fuzzy rules are defined by If-then form and are described as look-up table. Both temperature and its ensuing variation are used as input variables. While triangular membership function is used for the fuzzy input variables of fuzzy rules, singleton membership function is used for the output variable of fuzzy rules. The final output is calculated by using the center of gravity of fuzzy inference method. Experimental data acquired from individual electrical equipments is used in order to evaluate the output performance of the proposed system.

Improving the Effectiveness of Customer Classification Models: A Pre-segmentation Approach (사전 세분화를 통한 고객 분류모형의 효과성 제고에 관한 연구)

  • Chang, Nam-Sik
    • Information Systems Review
    • /
    • v.7 no.2
    • /
    • pp.23-40
    • /
    • 2005
  • Discovering customers' behavioral patterns from large data set and providing them with corresponding services or products are critical components in managing a current business. However, the diversity of customer needs coupled with the limited resources suggests that companies should make more efforts on understanding and managing specific groups of customers, not the whole customers. The key issue of this paper is based on the fact that the behavioral patterns extracted from the specific groups of customers shall be different from those from the whole customers. This paper proposes the idea of pre-segmentation before developing customer classification models. We collected three customers' demographic and transactional data sets from a credit card, a tele-communication, and an insurance company in Korea, and then segmented customers by major variables. Different churn prediction models were developed from each segments and the whole data set, respectively, using the decision tree induction approach, and compared in terms of the hit ratio and the simplicity of generated rules.

An Implementation of Inference-Based Web Ontology for Intelligent Image Retrieval System (지능형 이미지 검색 시스템을 위한 추론 기반의 웹 온톨로지 구축)

  • Kim, Su-Kyoung;Ahn, Kee-Hong
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.3
    • /
    • pp.119-147
    • /
    • 2007
  • Actually a diffusion of a semantic web application and utilization are situations insufficient extremely. Technology most important in semantic web application is construction of the ontology which contents itself with characteristics of semantic web. Proposed a suitable a method of building web ontology for characteristics or semantic web and web ontology as we compared the existing ontology construction ana ontology construction techniques proposed for web ontology construction, and we analyzed. And modeling old ontology to bases to description logic and the any axiom rule that used an expression way of SWRL, and established inference-based web ontology according to proposed ways. Verified performance of ontology established through ontology inference experiment. Also established an web ontology-based intelligence image retrieval system, to experiment systems for performance evaluation of established web ontology, and present an example of implementation of a semantic web application and utilization. Demonstrated excellence of a semantic web application to be based on ontology through inference experiment of an experiment system.

Construct of Fuzzy Inference Network based on the Neural Logic Network (신경 논리 망을 기반으로 한 퍼지 추론 망 구성)

  • 이말례
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Fuzzy logic ignores some information in the reasoning process. Neural network is powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule-inference network. And the traditional propagation rule is modified. Experiments are performed to compare search costs by sequential searching and searching by priority. The experimental results show that the searching by priority is more efficient than the sequential searching as the size of the fuzzy inference network becomes larder and an the number of searching increases.

  • PDF

An Alert Data Mining Framework for Intrusion Detection System (침입탐지시스템의 경보데이터 분석을 위한 데이터 마이닝 프레임워크)

  • Shin, Moon-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.459-466
    • /
    • 2011
  • In this paper, we proposed a data mining framework for the management of alerts in order to improve the performance of the intrusion detection systems. The proposed alert data mining framework performs alert correlation analysis by using mining tasks such as axis-based association rule, axis-based frequent episodes and order-based clustering. It also provides the capability of classify false alarms in order to reduce false alarms. We also analyzed the characteristics of the proposed system through the implementation and evaluation of the proposed system. The proposed alert data mining framework performs not only the alert correlation analysis but also the false alarm classification. The alert data mining framework can find out the unknown patterns of the alerts. It also can be applied to predict attacks in progress and to understand logical steps and strategies behind series of attacks using sequences of clusters and to classify false alerts from intrusion detection system. The final rules that were generated by alert data mining framework can be used to the real time response of the intrusion detection system.

Association-Based Conceptual Modeling for Smart Database Design (스마트 데이터베이스 설계를 위한 연관성 기반 개념적 모형화)

  • Lee, Sang-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.169-185
    • /
    • 2011
  • Data redundancy is problematic in that it not only induces heavy storage management cost but also could bring critical degradation of information systems. Unfortunately, to our knowledge, only few enterprises willingly afford time and efforts for the faithful conceptual design to prevent the degree of inappropriate data as much as they could, while most of enterprises pay rare attention to the notion of that sort of data quality. Wondering if there would be any other way to design the enterprise.wide data design without prior knowledge about business works is our major motivation for this study. In this paper, we present our data modeling methodology in which associations among objects in each sentences of a business job descriptions are treated as the focal point in database design. A proposed agent for automated design tool simply takes a business job description written in natural language as an input, and then designs an entity relationship diagram with some smart rules. We introduce the scope of the proposed agent and its detailed logics with several examples. And then, we verify the appropriateness of the resulted associations among objects. Lastly, we perform case studies to evaluate the devised agent's applicability to a business field.

An Predictive Analytics based on Goal-Scenario for Self-adaptive System (자가적응형 시스템을 위한 목표 시나리오 기반 예측 분석)

  • Baek, Su-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.77-83
    • /
    • 2017
  • For efficient predictive analysis, self-healing research is needed that enables the system to recover autonomously by self-cognition and diagnosing system problems. However, software development does not provide formal contextual information analysis and appropriate presentation structure according to external situation. In this paper, we propose a prediction analysis method based on the change contents by applying the extraction rule to the functions that can act, data, and transaction based on the new Goal-scenario. We also evaluated how well the predictive analysis met through the performance indicators for achieving the requirements goal. Compared with the existing methods, the proposed method has a maximum 32.8% higher matching result through performance measurement, resulting in a 28.9% error rate and a 45.8% reduction in the change code. This shows that it can be processed into a serviceable form through rules, and it shows that performance can be expanded through predictive analysis of changes.

Study on Classification Algorithm based on Weight of Support and Confidence Degree (지지도와 신뢰도의 가중치에 기반한 분류알고리즘에 관한 연구)

  • Kim, Keun-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.700-713
    • /
    • 2009
  • Most of any existing classification algorithm in data mining area have focused on goals improving efficiency, which is to generate decision tree more rapidly by utilizing just less computing resources. In this paper, we focused on the efficiency as well as effectiveness that is able to generate more meaningful classification rules in application area, which might consist of the ontology automatic generation, business environment and so on. For this, we proposed not only novel function with the weight of support and confidence degree but also analyzed the characteristics of the weighted function in theoretical viewpoint. Furthermore, we proposed novel classification algorithm based on the weighted function and the characteristics. In the result of evaluating the proposed algorithm, we could perceive that the novel algorithm generates more classification rules with significance more rapidly.