• Title/Summary/Keyword: 평가규칙

Search Result 1,025, Processing Time 0.033 seconds

Study on Named Entity Recognition in Korean Text (한국어 문서에서 개체명 인식에 관한 연구)

  • Lee, Kyung-Hee;Lee, Ju-Ho;Choi, Myung-Seok;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.292-299
    • /
    • 2000
  • 본 논문에서는 개체명 사전과 결합 단어 사전, 그리고 용언의 하위범주화 사전을 이용하는 규칙 기반의 한국어 개체명 인식 방법을 제안한다. 각 규칙은 네 단계로 나누어 적용되는데, 첫번째 단계에서는 어절 내의 단어 정보를, 두번째 단계에서는 제한된 주변 문맥 정보를, 그리고 세번째 단계에서는 용언의 하위범주화 정보와 개체명과의 관계를 이응하고, 마지막으로 네번째 단계에서는 개체명 간의 관계 정보를 고려한다. 본 논문에서 제안한 규칙 기반 개체명 인식기의 성능을 평가하기 위해 실험한 결과 90.4%의 정화률과 83.4%의 재현율을 얻었다.

  • PDF

Semantic Network Automatic Clustering Method of the Unified Medical Language System Using Genetic Algorithm (유전자 알고리즘을 이용한 통합의학언어시스템(UMLS)의 의미망 자동 군집 방법)

  • 지영신;김태준;전혜경;정헌만;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.82-84
    • /
    • 2003
  • UMLS 의미망은 크기가 방대하고 복잡하여 사용자가 이해하기가 어렵고 화면상에 모든 의미망을 모두 표현할 수 없다는 단점을 가지고 있다. 이 문제를 해결하기 위해 의미망을 효율적으로 분할하기 위한 규칙들이 소개되고 있지만 이것은 UMLS 의미망이 수정될 때마다 규칙을 적용하여 수작업으로 분류를 해야한다는 단점이 있다. 이 문제점을 해결하기 위해 유전자 알고리즘을 이용한 UMLS 의미망의 자동 군집화 방법을 제안한다. 제안한 방법은 각각의 의미유형 간의 연결된 의미관계를 사용하여 의미망을 구조적으로 유사한 의미유형 집합들로 군집화하고 규칙에 의한 군집 방법의 결과 비교 평가한다.

  • PDF

Ensemble of Classification Rules with Arithmetic Operators for the Accurate Classification of Lymphoma Cancer (림프종 암의 정확한 분류를 위한 산술연산자 분류규칙의 결합)

  • 홍진혁;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.202-204
    • /
    • 2004
  • 앙상블은 다수의 분류기를 효과적으로 결합하여 분류의 성능을 향상시키는 대표적인 기술이다. 효과적인 앙상블을 위해서는 다양한 특성을 지닌 분류기를 확보하여야 한다. 기존의 앙상블은 개별 분류기의 결과를 바탕으로 분류기 사이의 의존성이나 유사성을 평가하여 분류기 결합을 시도하였다. 따라서 분류기 사이의 유사도의 정확한 측정에 한계를 지니고 있다. 본 연구에서는 이를 극복하기 위해서 다수의 산술연산자 기반 분류규칙을 유전자 프로그래밍을 이용하여 획득하고, 실제 표현형의 유사성을 측정한 후 이를 바탕으로 분류기를 결합한다. 생물정보학에서 많이 사용되는 유전자 데이터 중 하나인 림포마 암 데이터에 제안하는 방법을 적용하여 97% 수준의 높은 분류 성능과 해석 가능한 분류규칙을 획득하였다.

  • PDF

An Efficient Algorithm Using the locality of Data for Mining Quantitative Association Rules (수량 연관규칙 생성을 위한 데이터의 지역성을 고려한 효과적인 알고리즘 제안)

  • 이혜정;박원환;박두순
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.126-129
    • /
    • 2003
  • 최근 대용량의 데이터베이스로부터 연관규칙을 발견하여 이를 활용하는 단계에서 이러한 연관규칙을 수량항목에도 적용할 수 있도록 확장하는 연구가 소개되고 있다. 본 논문에서는 수량 항목을 이진항목으로 변환하기 위하여 빈발구간 항목집합(Large Interval Itemsets)을 생성할 때 수량 항목이 특정 영역에 집중하여 발생하거나 골고루 분포되어 있지 않은 경우, 이러한 지역성(locality)을 고려하여 빈발구간 항목집합을 생성하는 방법을 제안한다. 이 방법은 기존의 방법보다 많은 수의 세밀한 빈발구간 항목들을 생성할 수 있을 뿐만 아니라 의미 있는 구간을 중심으로 빈발구간 항목들이 순서대로 생성되기 때문에 세밀도를 판단하여 활용할 수 있으며, 원 데이터가 가지고 있는 특성의 손실을 최소화할 수 있는 특징이 있다 또한 인구센서스등 실 데이터를 사용한 성능평가를 통하여 기존의 방법보다 우수함을 보였다.

  • PDF

Analysis of Leaf Node Ranking Methods for Spatial Event Prediction (의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Spatial events are predictable using data mining classification algorithms. Decision trees have been used as one of representative classification algorithms. And they were normally used in the classification tasks that have label class values. However since using rule ranking methods, spatial prediction have been applied in the spatial prediction problems. This paper compared rule ranking methods for the spatial prediction application using a decision tree. For the comparison experiment, C4.5 decision tree algorithm, and rule ranking methods such as Laplace, M-estimate and m-branch were implemented. As a spatial prediction case study, landslide which is one of representative spatial event occurs in the natural environment was applied. Among the rule ranking methods, in the results of accuracy evaluation, m-branch showed the better accuracy than other methods. However in case of m-brach and M-estimate required additional time-consuming procedure for searching optimal parameter values. Thus according to the application areas, the methods can be selectively used. The spatial prediction using a decision tree can be used not only for spatial predictions, but also for causal analysis in the specific event occurrence location.

The development of symmetrically and attributably pure confidence in association rule mining (연관성 규칙에서 활용 가능한 대칭적 기여 순수 신뢰도의 개발)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.601-609
    • /
    • 2014
  • The most widely used data mining technique for big data analysis is to generate meaningful association rules. This method has been used to find the relationship between set of items based on the association criteria such as support, confidence, lift, etc. Among them, confidence is the most frequently used, but it has the drawback that we can not know the direction of association by it. The attributably pure confidence was developed to compensate for this drawback, but the value was changed by the position of two item sets. In this paper, we propose four symmetrically and attributably pure confidence measures to compensate the shortcomings of confidence and the attributably pure confidence. And then we prove three conditions of interestingness measure by Piatetsky-Shapiro, and comparative studies with confidence, attributably pure confidence, and four symmetrically and attributably pure confidence measures are shown by numerical examples. The results show that the symmetrically and attributably pure confidence measures are better than confidence and the attributably pure confidence. Also the measure NSAPis found to be the best among these four symmetrically and attributably pure confidence measures.

Discovering Sequence Association Rules for Protein Structure Prediction (단백질 구조 예측을 위한 서열 연관 규칙 탐사)

  • Kim, Jeong-Ja;Lee, Do-Heon;Baek, Yun-Ju
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.553-560
    • /
    • 2001
  • Bioinformatics is a discipline to support biological experiment projects by storing, managing data arising from genome research. In can also lead the experimental design for genome function prediction and regulation. Among various approaches of the genome research, the proteomics have been drawing increasing attention since it deals with the final product of genomes, i.e., proteins, directly. This paper proposes a data mining technique to predict the structural characteristics of a given protein group, one of dominant factors of the functions of them. After explains associations among amino acid subsequences in the primary structures of proteins, which can provide important clues for determining secondary or tertiary structures of them, it defines a sequence association rule to represent the inter-subsequences. It also provides support and confidence measures, newly designed to evaluate the usefulness of sequence association rules, After is proposes a method to discover useful sequence association rules from a given protein group, it evaluates the performance of the proposed method with protein sequence data from the SWISS-PROT protein database.

  • PDF

Knowledge Reasoning Model using Association Rules and Clustering Analysis of Multi-Context (다중상황의 군집분석과 연관규칙을 이용한 지식추론 모델)

  • Shin, Dong-Hoon;Kim, Min-Jeong;Oh, SangYeob;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.11-16
    • /
    • 2019
  • People are subject to time sanctions in a busy modern society. Therefore, people find it difficult to eat simple junk food and even exercise, which is bad for their health. As a result, the incidence of chronic diseases is increasing. Also, the importance of making accurate and appropriate inferences to individual characteristics is growing due to unnecessary information overload phenomenon. In this paper, we propose a knowledge reasoning model using association rules and cluster analysis of multi-contexts. The proposed method provides a personalized healthcare to users by generating association rules based on the clusters based on multi-context information. This can reduce the incidence of each disease by inferring the risk for each disease. In addition, the model proposed by the performance assessment shows that the F-measure value is 0.027 higher than the comparison model, and is highly regarded than the comparison model.

Query-based User Emotion Prediction (질의 기반 사용자 감정상태 예측)

  • Min, Hye-Jin;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.211-214
    • /
    • 2014
  • 본 연구에서는 질의를 기반으로 사용자의 감정상태를 예측하는 방법을 제안한다. 제안방법은 자극-감정 규칙베이스 구축, 규칙확률 값 기반 질의 랭킹, 질의 랭킹 기반 사용자 감정예측의 단계로 구성된다. 방법의 적절성을 검증하기 위하여 힘들다와 심심하다에 대한 결과로 사용자평가를 실시하였다. 힘들다의 결과에서는 힘들다 정도에 대한 점수가 높은 질의들을 지속적으로 검색하는 사용자들을 힘들다라고 판단할 수 있다고 분석되었다. 심심하다의 결과에서는 방법 간 유의미한 차이를 보이지 않았으나, 특정 개별질의의 지속적인 패턴을 분석하는 것이 좀 더 높은 점수를 얻은 것으로 평가되었다.

  • PDF

Viterbi Morpheme Restoration in Korean (한국어에서 Viterbi 형태소 복원)

  • Lee, Je-seung;Kim, Jae-hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.536-539
    • /
    • 2021
  • 본 논문은 한국어에서 형태소 복원을 위한 새로운 방법을 제안한다. 일반적으로 기계학습 기반 형태소 분석에서 형태소 복원은 기분석 사전과 약간의 경험규칙을 이용한다. 이와 같은 방법은 모호성을 해결하기 위해 사전에 모든 정보를 저장하는 것이 불가능할 뿐 아니라 단음절 이형태의 모호성을 해결할 수 없을 것이다. 이러한 문제를 완화하기 위해 본 논문에서는 생성된 모호성을 Viterbi 알고리즘을 이용해서 해소한다. 본 논문의 형태소 복원 과정은 기본적으로 기분석 사전과 약간의 경험규칙을 이용하여 형태소 복원 후보를 찾고 여러 후보가 있을 경우(모호성의 생성), 그 결과를 Viterbi 알고리즘으로 이형태를 결정한다. 실험을 위해 모두의 말뭉치(형태 분석)를 사용하고, 평가는 NER 방식으로 평가한다. 그 결과 품사 부착에 대해 96.28%정도의 성능을 보여주었다.

  • PDF