• Title/Summary/Keyword: 평가객체

Search Result 928, Processing Time 0.026 seconds

Ship Detection from SAR Images Using YOLO: Model Constructions and Accuracy Characteristics According to Polarization (YOLO를 이용한 SAR 영상의 선박 객체 탐지: 편파별 모델 구성과 정확도 특성 분석)

  • Yungyo Im;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Youngmin Seo;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.997-1008
    • /
    • 2023
  • Ship detection at sea can be performed in various ways. In particular, satellites can provide wide-area surveillance, and Synthetic Aperture Radar (SAR) imagery can be utilized day and night and in all weather conditions. To propose an efficient ship detection method from SAR images, this study aimed to apply the You Only Look Once Version 5 (YOLOv5) model to Sentinel-1 images and to analyze the difference between individual vs. integrated models and the accuracy characteristics by polarization. YOLOv5s, which has fewer and lighter parameters, and YOLOv5x, which has more parameters but higher accuracy, were used for the performance tests (1) by dividing each polarization into HH, HV, VH, and VV, and (2) by using images from all polarizations. All four experiments showed very similar and high accuracy of 0.977 ≤ AP@0.5 ≤ 0.998. This result suggests that the polarization integration model using lightweight YOLO models can be the most effective in terms of real-time system deployment. 19,582 images were used in this experiment. However, if other SAR images,such as Capella and ICEYE, are included in addition to Sentinel-1 images, a more flexible and accurate model for ship detection can be built.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

A Product Model Centered Integration Methodology for Design and Construction Information (프로덕트 모델 중심의 설계, 시공 정보 통합 방법론)

  • Lee Keun-Hyoung;Kim Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.99-106
    • /
    • 2002
  • Researches on integration of design and construction information from earlier era focused on the conceptual data models. Development and prevalent use of commercial database management system led many researchers to design database schemas for enlightening of relationship between non-graphic data items. Although these researches became the foundation fur the proceeding researches. they did not utilize the graphic data providable from CAD system which is already widely used. 4D CAD concept suggests a way of integrating graphic data with schedule data. Although this integration provided a new possibility for integration, there exists a limitation in data dependency on a specific application. This research suggests a new approach on integration for design and construction information, 'Product Model Centered Integration Methodology'. This methodology achieves integration by preliminary research on existing methodology using 4D CAD concept. and by development and application of new integration methodology, 'Product Model Centered Integration Methodology'. 'Design Component' can be converted into digital format by object based CAD system. 'Unified Object-based Graphic Modeling' shows how to model graphic product model using CAD system. Possibility of reusing design information in latter stage depends on the ways of creating CAD model, so modeling guidelines and specifications are suggested. Then prototype system for integration management, and exchange are presented, using 'Product Frameworker', and 'Product Database' which also supports multiple-viewpoints. 'Product Data Model' is designed, and main data workflows are represented using 'Activity Diagram', one of UML diagrams. These can be used for writing programming codes and developing prototype in order to automatically create activity items in actual schedule management system. Through validation processes, 'Product Model Centered Integration Methodology' is suggested as the new approach for integration of design and construction information.

  • PDF

A Case Study of Software Architecture Design by Applying the Quality Attribute-Driven Design Method (품질속성 기반 설계방법을 적용한 소프트웨어 아키텍처 설계 사례연구)

  • Suh, Yong-Suk;Hong, Seok-Boong;Kim, Hyeon-Soo
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.121-130
    • /
    • 2007
  • in a software development, the design or architecture prior to implementing the software is essential for the success. This paper presents a case that we successfully designed a software architecture of radiation monitoring system (RMS) for HANARO research reactor currently operating in KAERI by applying the quality attribute-driven design method which is modified from the attribute-driven design (ADD) introduced by Bass[1]. The quality attribute-driven design method consists of following procedures: eliciting functionality and quality requirements of system as architecture drivers, selecting tactics to satisfy the drivers, determining architectures based on the tactics, and implementing and validating the architectures. The availability, maintainability, and interchangeability were elicited as duality requirements, hot-standby dual servers and weak-coupled modulization were selected as tactics, and client-server structure and object-oriented data processing structure were determined at architectures for the RMS. The architecture was implemented using Adroit which is a commercial off-the-shelf software tool and was validated based on performing the function-oriented testing. We found that the design method in this paper is an efficient method for a project which has constraints such as low budget and short period of development time. The architecture will be reused for the development of other RMS in KAERI. Further works are necessary to quantitatively evaluate the architecture.

Stereoscopic Effect of 3D images according to the Quality of the Depth Map and the Change in the Depth of a Subject (깊이맵의 상세도와 주피사체의 깊이 변화에 따른 3D 이미지의 입체효과)

  • Lee, Won-Jae;Choi, Yoo-Joo;Lee, Ju-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.29-42
    • /
    • 2013
  • In this paper, we analyze the effect of the depth perception, volume perception and visual discomfort according to the change of the quality of the depth image and the depth of the major object. For the analysis, a 2D image was converted to eighteen 3D images using depth images generated based on the different depth position of a major object and background, which were represented in three detail levels. The subjective test was carried out using eighteen 3D images so that the degrees of the depth perception, volume perception and visual discomfort recognized by the subjects were investigated according to the change in the depth position of the major object and the quality of depth map. The absolute depth position of a major object and the relative depth difference between background and the major object were adjusted in three levels, respectively. The details of the depth map was also represented in three levels. Experimental results showed that the quality of the depth image differently affected the depth perception, volume perception and visual discomfort according to the absolute and relative depth position of the major object. In the case of the cardboard depth image, it severely damaged the volume perception regardless of the depth position of the major object. Especially, the depth perception was also more severely deteriorated by the cardboard depth image as the major object was located inside the screen than outside the screen. Furthermore, the subjects did not felt the difference of the depth perception, volume perception and visual comport from the 3D images generated by the detail depth map and by the rough depth map. As a result, it was analyzed that the excessively detail depth map was not necessary for enhancement of the stereoscopic perception in the 2D-to-3D conversion.

  • PDF

Digital Hologram Compression Technique By Hybrid Video Coding (하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kang, Hoon-Jong;Lee, Seung-Hyun;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.29-40
    • /
    • 2005
  • According as base of digital hologram has been magnified, discussion of compression technology is expected as a international standard which defines the compression technique of 3D image and video has been progressed in form of 3DAV which is a part of MPEG. As we can identify in case of 3DAV, the coding technique has high possibility to be formed into the hybrid type which is a merged, refined, or mixid with the various previous technique. Therefore, we wish to present the relationship between various image/video coding techniques and digital hologram In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video and image. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. Finally the proposed hybrid compression algorithm is all of these methods. The tool for still image coding is JPEG2000, and the toots for video coding include various international compression algorithm such as MPEG-2, MPEG-4, and H.264 and various lossless compression algorithm. The proposed algorithm illustrated that it have better properties for reconstruction than the previous researches on far greater compression rate above from four times to eight times as much. Therefore we expect that the proposed technique for digital hologram coding is to be a good preceding research.

A User Profile-based Filtering Method for Information Search in Smart TV Environment (스마트 TV 환경에서 정보 검색을 위한 사용자 프로파일 기반 필터링 방법)

  • Sean, Visal;Oh, Kyeong-Jin;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.97-117
    • /
    • 2012
  • Nowadays, Internet users tend to do a variety of actions at the same time such as web browsing, social networking and multimedia consumption. While watching a video, once a user is interested in any product, the user has to do information searches to get to know more about the product. With a conventional approach, user has to search it separately with search engines like Bing or Google, which might be inconvenient and time-consuming. For this reason, a video annotation platform has been developed in order to provide users more convenient and more interactive ways with video content. In the future of smart TV environment, users can follow annotated information, for example, a link to a vendor to buy the product of interest. It is even better to enable users to search for information by directly discussing with friends. Users can effectively get useful and relevant information about the product from friends who share common interests or might have experienced it before, which is more reliable than the results from search engines. Social networking services provide an appropriate environment for people to share products so that they can show new things to their friends and to share their personal experiences on any specific product. Meanwhile, they can also absorb the most relevant information about the product that they are interested in by either comments or discussion amongst friends. However, within a very huge graph of friends, determining the most appropriate persons to ask for information about a specific product has still a limitation within the existing conventional approach. Once users want to share or discuss a product, they simply share it to all friends as new feeds. This means a newly posted article is blindly spread to all friends without considering their background interests or knowledge. In this way, the number of responses back will be huge. Users cannot easily absorb the relevant and useful responses from friends, since they are from various fields of interest and knowledge. In order to overcome this limitation, we propose a method to filter a user's friends for information search, which leverages semantic video annotation and social networking services. Our method filters and brings out who can give user useful information about a specific product. By examining the existing Facebook information regarding users and their social graph, we construct a user profile of product interest. With user's permission and authentication, user's particular activities are enriched with the domain-specific ontology such as GoodRelations and BestBuy Data sources. Besides, we assume that the object in the video is already annotated using Linked Data. Thus, the detail information of the product that user would like to ask for more information is retrieved via product URI. Our system calculates the similarities among them in order to identify the most suitable friends for seeking information about the mentioned product. The system filters a user's friends according to their score which tells the order of whom can highly likely give the user useful information about a specific product of interest. We have conducted an experiment with a group of respondents in order to verify and evaluate our system. First, the user profile accuracy evaluation is conducted to demonstrate how much our system constructed user profile of product interest represents user's interest correctly. Then, the evaluation on filtering method is made by inspecting the ranked results with human judgment. The results show that our method works effectively and efficiently in filtering. Our system fulfills user needs by supporting user to select appropriate friends for seeking useful information about a specific product that user is curious about. As a result, it helps to influence and convince user in purchase decisions.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.