• Title/Summary/Keyword: 편심질량

Search Result 24, Processing Time 0.034 seconds

Control of the Eccentric Building Using a TMD with Torsional Rigidity (비틀림 강성을 가지는 동조질량감쇠기를 이용한 편심건물의 제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • In this stury, control performance of tuned mass damper (TMD) with torsional rigidity for an eccentric structure showing torsional responses is investigated. To this end, an eccentric structure subjected to earthquake excitation is used to evaluate the control performance of torsional TMD by varying installed location and torsional rigidity of TMD, To reduce computational time required for repetitive time history analysis of an example structure having non-proportional damping system due to TMD, an equivalent analytical model is used in this study. Torsional properties of TMD usually neglected in typical TMD are verified to be effective in reduction of torsional responses of the eccentric structure. In the case of eccentric structures, it has been seen that the center of a plane of a structure may not be optimal location of TMD.

Anti-Vibration Control of Active Magnetic Bearing (축 편심 질량 보상을 통한 능동 자기 베어링 시스템의 진동 저감)

  • Lee, Wook-Jin;Oh, Seung-Suk;Cheong, Dal-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.538-539
    • /
    • 2010
  • 자기 베어링 시스템은 축과 베어링간의 자기적 힘을 이용하여 축을 비접촉으로 지지함으로써 고속으로 회전하는 회전체의 마찰손을 저감시킨다. 고속 회전체에 편심(Eccentricity)이 있을 경우 편심 질량으로 인한 원심력이 속도의 제곱에 비례하여 발생하게 되고, 축을 지지하고 있는 베어링에 과도한 진동을 유발하게 된다. 베어링에 전해지는 진동이 커지게 되면 진동 자체도 문제일 뿐 아니라 베어링이 부담해야 하는 힘의 크기가 커지게 되어 자기 베어링 및 이를 구동하는 전력전자 기기의 용량을 증가시켜야 하는 문제가 있다. 본 논문에서는 베어링의 지지력을 능동적으로 제어하는 능동 자기 베어링을 사용하여 축의 편심 질량의 크기 및 편심 위치를 파악하고 회전 관성 중심점으로 축을 회전시킴으로써 회전 진동을 저감하는 방법을 제안하고, 실험 결과로써 제안된 방법의 타당성을 검증한다.

  • PDF

Performance analysis of scroll compressor considering eccentric mass of orbiting scroll (선회스크롤의 편심질량을 고려한 스크롤압축기의 성능해석)

  • 박승철;이진갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.605-614
    • /
    • 1999
  • Orbiting scroll mass center is different from the basic circle's for the normal involute profile. As for the orbiting scroll balanced conditions, the dynamic modeling are set up. The influences on sealing, reaction forces between the moving elements and forces from the moving elements to the compressor frame are analyzed in this paper. The simulation and experiment results are presented.

  • PDF

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

Investigation of Unbalanced Mass of a Work Roll in a Cold Rolling Mill (냉간 압연기에서 작업롤의 질량 불평형에 관한 연구)

  • Kim, Young-Deuk;Kim, Chang-Wan;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.429-435
    • /
    • 2012
  • An abrasion due to continuous friction between a work roll and strip causes the mass of the work roll to be unbalanced in the rolling process. We developed a mathematical model for the rolling mill considering the unbalanced mass and verified the model experimentally. The work roll was approximated as a rigid rotor with eccentricity, and the effect of the unbalanced mass on chatter vibration was investigated. The joint forces computed by quasistatic analysis were applied to the work roll in the rolling mill. Transient responses were obtained, and frequency analysis was performed by solving equations of motion using a direct integration method. Horizontal vibrations were more strongly affected by eccentricity than vertical vibrations. In the horizontal direction, a small eccentricity of 1% of the work roll radius considerably increased the amplitude of the chatter frequency.

Condition Monitoring Of Rotating Machine With Mass Unbalance Using Hidden Markov Model (은닉 마르코프 모델을 이용한 질량 편심이 있는 회전기기의 상태진단)

  • Ko, Jungmin;Choi, Chankyu;Kang, To;Han, Soonwoo;Park, Jinho;Yoo, Honghee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.833-834
    • /
    • 2014
  • In recent years, a pattern recognition method has been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov model has recently been used as pattern recognition methods in various fields. In this study, a HMM method for the fault diagnosis of a mechanical system is introduced, and a rotating machine with mass unbalance is selected for fault diagnosis. Moreover, a diagnosis procedure to identity the size of a defect is proposed in this study.

  • PDF

Study of Apparent Mass and Apparent Eccentric Mass to Vertical Whole-body Vibration by Using Strain-gage Type Six-axis Force Plate (6축 힘측정판을 이용한 수직방향 전신진동에 대한 겉보기질량 및 겉보기편심질량에 대한 고찰)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.897-904
    • /
    • 2011
  • When whole-body is exposed to vertical vibration, asymmetry shape of human body affects the response on the translational(fore-aft, lateral, vertical) and rotational(roll, pitch, yaw) motion. While the translational motion has been studied with various titles, it has been rare to study the rotational motion of human body exposed to vertical excitation because of lack of experimental equipment. This study was performed by using a 6-axis force plate installing strain gage type sensors for the rotational response. Sixteen male subjects were exposed to vertical vibration on rigid seat in order to investigate apparent mass of three translational motion and apparent eccentric mass of three rotational motion. Random signal was generated to make excitation vibration which was on an effective frequency range of 3~40 Hz, and magnitude of 0.224 m/$s^2$ r.m.s. The frequency range and magnitude used was selected for the vibration of passenger vehicle on idling condition. As the result, cross-axis apparent masses of fore-and-aft and lateral direction were not significant showing 20 % and 3 % of vertical apparent mass relatively. And apparent eccentric mass of pitch motion was dominant when compared to that of roll and yaw motion, which is reasoned by asymmetry direction of human body sitting on a seat.

A Study on Speed Error of Disk Type SPMSM with Eccentric Load (편심 부하를 가지는 Disk Type SPMSM에서 속도오차에 관한 연구)

  • Lee, K.W.;Kim, Y.S.;Lee, H.J.;Ryoo, S.R.;Kwon, Y.A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.109-111
    • /
    • 2002
  • 디스크 형의 회전자를 가지고 있는 영구자석 표면 부착형 동기 전동기에서 회전자가 중력 방향에 직각으로 서있고, 디스크 상에 부하가 존재하는 경우 디스크의 불균일한 질량 분포에 의해 편심이 발생한다. 편심 부하는 합성 무게 중심이 반중력 방향으로 향하면 전동기의 속도는 감소하고, 중력 방향이면 속도가 증가하는 정현적인 부하 토크로 작용하여 정현적 인 속도 오차를 발생시킨다. 이 속도 오차를 감소시키기 위해 q-축 전류와 측정된 속도를 입력으로 가지는 부하 토크 관측기를 설계하여 생성된 보상전류를 피드 포워드 방식으로 q-축 지령 전류에 보상하는 방식을 사용한다. 본 연구에서는 부하 토크 관측기를 사용하는 방식에서 발생하는 속도오차에 관하여 분석하였다.

  • PDF