• Title/Summary/Keyword: 편마모 검출

Search Result 6, Processing Time 0.019 seconds

Wearing Degree and Uneven Wearing Detection of Tires Using Horizontal Edge Information (가로 방향 에지를 이용한 자동차 타이어의 마모도 측정 및 편마모 여부 검출)

  • Lee, Tae-Hee;Park, Eun-Jin;Kim, Ki-Ju;Choi, Doo-Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.21-27
    • /
    • 2018
  • Wearing degree and uneven wearing detection algorithm using horizontal edge information is proposed in this paper. The noise in the input image is removed by bilateral filter, and then edges are extracted from the filtered image by using the proposed mask. As the tire is worn, grooves of tire shoulder or sipes are changed more than the vertical grooves. Therefore the edges from grooves of tire shoulder or sipes have more information about the tire wearing than the edges from vertical grooves. Proposed mask that is reflected this feature is used to extract the horizontal edges. After edge extraction, the edge image is represented in two-level system. The edge pixels of the binarization image are used to decide the wearing degree and uneven wearing. This proposed method can be used easily without any other equipments. The proposed method is conducted with a real vehicle, and the experimental results show the good performance of the proposed method in detecting wearing degree and uneven wearing.

Automated Inspection System for Brake Shoe of Rolling Stock (철도차량용 제륜자의 자동 검사 시스템)

  • Kim, Hyun-Cheol;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.1-15
    • /
    • 2009
  • In this paper, we have proposed an automated system that accurately measures the thickness and unbalanced wear of brake shoes, and the distance between brake shoes and wheels for travelling rolling stock. The images of brake shoes are captured automatically while rolling stock is passing by an inspection station. And in order to measure the thickness, etc. the locations of brake shoes are first determined because the locations are not the same in the captured image. Toward this goal, shadow regions between the brake shoes and wheels are utilized that are common in all captured images. The boundary of the shadow regions is modeled by an second order polynomial, and constrained curve fitting method is adopted to detect a curve (the initial curve) that passes through the regions. Then, three curves that correspond to the front, back of brake shoes and wheels, and a line that passes through the vertical surface of brake shoes are detected using the initial curve and intensity change information. Finally, the thickness, etc. are calculated using the detected curves and line, and experimental results showed that the brake shoe thickness was measured with an accuracy of 0.654mm.

Intercomparisonn of Techniques for Pressure Tube Inspection of Pressurized heavy Water Reactor (가압 중수로형 원자력발전소 압력관 비파괴검사기술의 상호비교)

  • Lee, Hee-Jong;Kim, Yong-Si;Yoon, Byung-Sik;Lee, Young-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.294-303
    • /
    • 2005
  • This paper describes the analysis results of a series f Round-Robin test that was performed to intercompare inspection and diagnosis techniques for characterization of pressure tube f a pressurized heavy water reactor under the Coordinated Research Project(CRP) of IAEA's nuclear Power Programme. For this test, six nations, Korea, Canada, India, Argentina, Rumania, and China that currently have pressurized heavy water reactors under operation involved, and the "KOR-1" pressure tube sample prepared by Korea was used. Two kinds of NDE technique, ultrasonic and eddy current test, were applied for these tests. The "KOR-1" pressure tube sample contains total 12 artificial flaws such as crack-like EDM notches, wear that is similar to the real flaws and can be produced on the pressure tubes during plant operation. Test results showed that seven laboratories from six nations detected all twelve flaws in "KOR-1" specimen by using ultrasonic and eddy current test methods, and ultrasonic test method was more accurate than eddy current test method in flaw detectin and sizing. ID flaws in pressure tube sample were more easily detected and accurately sized than OD flaws.

An Analysis of Engine Failures Using Multivariate Data Analysis Method (다변량해석법을 이용한 기관고장분석)

  • 윤석훈
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.4
    • /
    • pp.198-203
    • /
    • 1987
  • The basis of all approaches to improve reliability of marine engines exists in analyzing the field data of troubles and failures on marine engines. This paper analyses the data of troubles and failures on marine engines by Principal Component Analysis Method, one of Multivariate Data Analysis Method. The total number of data investigated is 211 and the observation period is 9 years. The analyzed factors are categorized among five groups respectively; electric.automatic control equipments, auxiliary machinery, pipings, refrigerators.air conditioners, and main engine. The failures in main engine are discovered by a definite fact of disorder, on the contrary, the failures in auxiliary machinery, refrigerators and air conditioners are discovered by sensible judgement of the operators.

  • PDF

RCCA End-Tip Examination by ECT (원자로 제어봉 End-Tip 원주방향균열 와전류검사)

  • Lee, H.J.;Nam, M.W.;Jung, G.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.6
    • /
    • pp.455-463
    • /
    • 1998
  • RCCA(rod cluster control assembly) End-Tip suffers from neutron irradiation and constant vibration due to high-speed internal flow of primary coolant during plant operation. Such operating conditions cause the RCCA end-tip crackings around tile circumferential weldment of the end-tip, and in some cases, the defective end-tips were completly broken loose. However, no reliable inspection techniques for end-tip crackings were developed in the past, although some techniques exist for inspecting RCCA control rod wears. Therefore, NDE group at KEPRI has developed an ECT technique for the detection and the sizing of the end-tip crackings. The technique uses a specially designed surface-riding probe that can detect size of circumferential crackings with an accuracy of ${\pm}5.31%$ RMS error. This paper describes the ECT instrumentation including the ECT probes, calibration bars, as well as technical approaches.

  • PDF

Development of Profile Technique for Steam Generator Tubes in Nuclear Power Plants Using $8{\times}1$ Multi-Array Eddy Current Probe ($8{\times}1$ 다중코일 와전류탐촉자를 이용한 원전 증기발생기 전열관 단면형상검사 기법 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.184-190
    • /
    • 2008
  • Various ECT techniques have been applied basically to assess the integrity of steam generator tithing in nuclear power plant. Among these techniques, the bobbin probe technique is applied generally to examine the volumetric flaws such as a crack-like defect and wear which is generally occurred on steam generator tubing, and additionally MRPC probe is used to examine closely tile top of tubesheet and bending regions due to the high possibility of cracking. Dent and bulge also may be formed on tube during installation process and operation of steam generator, but the dent and bulge indications greater than specific size criteria are recorded on examination report because these indications are not considered as flaw. These indications can be easily detected with bobbin probe and approximately sized with profile bobbin probe, but the size and shape can not be accurately verified. Accordingly, in this study, the $8{\times}1$ multi-array EC probe was designed to increase the measurement accuracy of the sectional profiling EC testing of tube. As a result, we would like to propose the application of $8{\times}1$ multi-array EC probe for the measurement of size and shape of profile change on steam generator tube in OPR-1000 nuclear power plant.