• Title/Summary/Keyword: 펜타센

Search Result 33, Processing Time 0.015 seconds

The Electrical Characteristics of Pentacene Thin-Film for the active layer of Organic TFT deposited at the Various Evaporation conditions and the Annealing Temperatures (증착조건 및 열처리 온도에 따른 유기 TFT의 활성층용 펜타센 박막의 전기적 특성 연구)

  • 구본원;정민경;김도현;송정근
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.80-83
    • /
    • 2000
  • In this work we deposited Pentacene thin film by OMBD at the various substrate temperatures, deposition rate and the various annealing temperatures for the fabrication of organic TFT and investigated the electrical and film surface characteristics such as sheet resistance, contact resistance and conductance Film thickness were measured by $\alpha$-step and the sheet resistance, contact resistance and conductance were extracted from the relation between the distance of the contacts and the resistance. During the film deposition the substrate temperature was held at 3$0^{\circ}C$, 4$0^{\circ}C$, 5$0^{\circ}C$, 6$0^{\circ}C$, 8$0^{\circ}C$ and 10$0^{\circ}C$, respectively. After the film deposition, Au contact was deposited by thermal evaporation. For the effect of annealing, the thin film was annealed in the nitrogen environment at 10$0^{\circ}C$ and 14$0^{\circ}C$ for 10 seconds, respectively. Film surface characteristics at the vatious substrate temperatures were measured by AFM. The crystallization of thin film was improved as the substrate temperatures were increased and the maximum gram size was 4${\mu}{\textrm}{m}$. The conductivity of thin film was found to be 7.40 $\times$10$^{-7}$ ~ 7.78$\times$10$^{-6}$ S/cm and the minimum contact resistance was 2.5324 ㏁.

  • PDF

A Printing Process for Source/Drain Electrodes of OTFT Array by using Surface Energy Difference of PVP (Poly 4-vinylphenol) Gate Dielectric (PVP(Poly 4-vinylphenol) 게이트 유전체의 표면에너지 차이를 이용한 유기박막트랜지스터 어레이의 소스/드레인 전극 인쇄공정)

  • Choi, Jae-Cheol;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.7-11
    • /
    • 2011
  • In this paper, we proposed a simple and high-yield printing process for source and drain electrodes of organic thin film transistor (OTFT). The surface energy of PVP (poly 4-vinylphenol) gate dielectric was decreased from 56 $mJ/m^2$ to 45 $mJ/m^2$ by adding fluoride of 3000ppm into it. Meanwhile the surface energy of source and drain (S/D) electrodes area on the PVP was increased to 87 $mJ/m^2$ by treating the areas, which was patterned by photolithography, with oxygen plasma, maximizing the surface energy difference from the other areas. A conductive polymer, G-PEDOT:PSS, was deposited on the S/D electrode areas by brushing painting process. With such a simple process we could obtain a high yield of above 90 % in $16{\times}16$ arrays of OTFTs. The performance of OTFTs with the fluoride-added PVP was similar to that of OTFTs with the ordinary PVP without fluoride, generating the mobility of 0.1 $cm^2/V.sec$, which was sufficient enough to drive electrophoretic display (EPD) sheet. The EPD panel employing the OTFT-backpane successfully demonstrated to display some patterns on it.

Performance enhancement of Organic Thin Film Transistor using $C_{60}$ hole injection layer ($C_{60}$(buckminsterfullurene) 홀주입층을 적용한 유기박막트랜지스터의 성능향상)

  • Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.19-25
    • /
    • 2008
  • In this study, we fabricated Organic Thin Film Transistors(OTFTs) with $C_{60}$ hole injection layer between organic semiconductor(pentacene) and metal electrode, and we compared the electrical characteristics of OTFTs with/without $C_{60}$. When the $C_{60}$ hole injection layer was introduced, the mobility and the threshold voltage were improved from 0.298 $cm^2/V{\cdot}s$ and -13.3V to 0.452 $cm^2/V{\cdot}s$ and -10.8V, and the contact resistance was also reduced. When the $C_{60}$ is inserted, the hole injection was enhanced because the $C_{60}$ prevent the unwanted chemical reaction between pentacene and Au. Furthermore, we fabricated the OTFTs using Al as their electrodes. When the OTFTs were made by only aluminum electrode, the channel were not mostly made because of the high hole injection barrier between pentacene and aluminum, but when the $C_{60}$ layer with an optimal thickness was applied between aluminum and pentacene, the device performances were obviously enhanced because of the vacuum energy level shift of Al and the consequent decrease of the hole injection barrier which was induced by the interface dipole formation between $C_{60}$ and Al. The mobility and $I_{ON}/I_{OFF}$ current ratio of OTFT with $C_{60}/Al$ electrode were 0.165 $cm^2/V{\cdot}s$ and $1.4{\times}10^4$ which were comparable with the normal Au electrode OTFT.