• Title/Summary/Keyword: 페로니켈슬래그미분말

Search Result 3, Processing Time 0.023 seconds

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

A Study on Strength and Durability of Vibrated and Rolled Method Mortar Mixed with Desulfurized Gypsum and Ferronickel Slag Fine Powder (탈황석고와 페로니켈슬래그 미분말을 혼합한 진동전압방식 모르타르의 강도 및 내구성에 관한 연구)

  • Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.545-552
    • /
    • 2021
  • In this study, strength and durability evaluations are performed on vibrated-rolled method mortar mixtures containing desulfurized gypsum and ferronickel slag powder. Desulfurized gypsum and ferronickel slag fine powders were substituted for 25% limestone fine powders u sed in the manu factu re of VR tu bes, and mortar specimens were prepared u sing vibrated-rolled method. Accordingly, flexural and compressive strengths were performed to evaluate the strength, and chlorine ion penetration resistance and sulfuric acid resistance tests were performed to evaluate durability. Flexural and compressive strength were improved in the range 20 to 60% of desu lfu rized gypsu m among admixtu res, and the amou nt of passing charge decreased in the choride ion penetration resistance test in the range of 20 to 80% of desulfurized gypsum. As for the resistance to su lfu ric acid, when the proportion of desu lfu rized in the admixtu re was 40%, the strength and weight change rate according to the immersion period was reduced. Appropriate use of desulfurized gypsum and ferronickel slag powder is expected to improve performance in terms of strength and durability.

Analysis of the influence of combined use of ferronickel slag fine powder and admixture on VR sewage pipe strength development (페로니켈슬래그 미분말 및 혼화재의 복합사용이 VR 하수관 강도발현에 미치는 영향분석)

  • Nam, Sang-Koo;Chung, Tae-Jun;Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.214-221
    • /
    • 2018
  • In this paper, the effects of ferronickel slag powder and admixture on the strength of VR sewer pipe were analyzed. the substitution rate was tested as a variable, and the strength development was studied through the flexural strength, compressive strength and using SEM microscopic analysis. bending strength, compressive strength results and micro analysis using SEM showed the correlation in each case. the substitution rates were 20% and 30% relative to the mass of the OPC respectively, and were substituted according to a constant ratio of ferronickel slag fine powder and mixture. when the substitution ratio was 20%, the strength development was excellent. also, bending strength and compressive strength were the best when the ferronickel slag fine powder, quicklime, gypsum and calcium chloride were used as the admixture, dense microstructural patterns appeared. the possibility of progressive strength development is shown after 28 days.