• Title/Summary/Keyword: 페라이트산화물

Search Result 2, Processing Time 0.015 seconds

TWO-STEP THERMOCHEMICAL CYCLES FOR HYDROGEN PRODUCTION WITH DISH TYPE SOLAR THERMAL SYSTEM and $CeO_2/NiFe_2O_4$ (접시형 태양열 집광 시스템과 산화세륨 및 페라이트산화물을 이용한 열화학 사이클의 수소생산)

  • Kwon, Hae-Sung;Oh, Sang-June;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.113-119
    • /
    • 2012
  • The two-step water splitting thermochemical cycle is composed of the T-R (Thermal Reduction) and W-D (Water Decomposition) steps. The mechanism of this cycle is oxidation-reduction, which produces hydrogen. The reaction temperature necessary for this thermochemical cycle can be achieved by a dish-type solar thermal collector (Inha University, Korea). The purpose of this study is to validate a water splitting device in the field. The device is studied and fabricated by Kodama et al (2010, 2011). The validation results show that the foam device, when loaded with $CeO_2$ powder, was successfully achieved hydrogen production under field conditions. Through this experiment, we can analyze the characteristics of the catalyst and able to determine which is more advantageous thing to produce hydrogen compared with previous experiment that used ferrite-device.

  • PDF

CO2 decomposition characteristics of Ni-ferrite powder (Ni-페라이트 분말을 이용한 CO2 분해 특성)

  • Nam, Sung-Chan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5376-5383
    • /
    • 2011
  • The objective of this study is the development of carbon-recycle technology, that converts carbon dioxide captured from flue gas to carbon monoxide or carbon for reuse in industrial fields. It is difficult to decompose $CO_2$ because $CO_2$ is very stable molecule. And then metal oxide was used as an activation agent or catalyst for the decomposition of $CO_2$ at low temperature. Metal oxides, which converts $CO_2$ to CO or C, were prepared using Ni-ferrite by solid state method and hydrothermal synthesis in this study. TPR/TPO and TGA were used as an analysis method to analyze the decomposition characteristics of $CO_2$. As the results, the reduction area of $H_2$ was high value at 15 wt% of NiO and the decomposition area of $CO_2$ was superior capacity at 5 wt% of NiO. However, TGA data showed contrary results that reduction area of $H_2$ was 28.47wt% and oxidation area by $CO_2$ was 26.95wt% at 2.5 wt% of NiO, one of the Ni-ferrite powders synthesized using solid state method. $CO_2$ decomposition efficiency was 94.66% and it is excellent results in comparison with previous studies.