• 제목/요약/키워드: 페놀폐수

Search Result 72, Processing Time 0.027 seconds

The Methanogenic Toxicity of Wood Resin Constituents (메탄생성균에 대한 Wood resin 구성성분의 독성에 관한 연구)

  • 장봉기;허준무;손부순;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.139-147
    • /
    • 1997
  • 펄프폐수 내에 존재하는 대표적인 수지 구성성분의 일종인 wood resin 화합물이 메탄생성균에 미치는 독성을 평가하기 위한 회분식 독성실험을 수행하였다. 수지는 극성용매로 추출가능한 몇몇 wood 구성성분의 혼합물로서 수지의 주요 구성성분은 긴 사슬 휘발성유기산, terpenes, resin acids, 리그난과 극성 페놀류들이다. 메탄생성균의 독성실험은 $30^{\circ}C$에서 표준회분식 실험방법을 채택하였고 식종물질로서는 입상슬러지를 사용하였다. 극성페놀의 한 종류인 4-hydroxystilbene가 가장 높은 독성을 나타내었으며, 50% 저해를 일으키는 농도는 $20mg/\ell$이었다. Resin acid와 휘발성 terpene 역시 메탄생성균에 독성을 나타내었으며, 50% 독성을 일으키는 농도는 $43{\;}~{\;}330mg/\ell$이었다. 반면에 triterpenes은 1,000 to $1,300{\;}mg/\ell$의 상대적으로 높은 농도에서도 메탄생성균에 독성을 일으키지 않았다. 따라서 wood resin의 구성성분이 몇몇 펄프폐수의 혐기성 처리에 있어서 독성을 일으키는 주요물질이었다.

  • PDF

Temperature-Dependent Effects of Pollutants on Biological Denitrification Process for Treating Cokes Wastewater (코크스폐수의 생물학적 탈질공정에 대한 독성물질의 온도에 따른 영향)

  • Kim, Young Mo;Park, Donghee;Ahn, Chi Kyu;Lee, Min Woo;Park, Jong Moon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1124-1129
    • /
    • 2008
  • Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of pollutants, such as phenol, ammonia, thiocyanate and cyanides. Although biological pre-denitrification process has been used to treat this wastewater in Korea, unexpected failure in nitrogen removal occasionally occurs during summer season. In this study, therefore, we examined inhibitory effects of phenol, ammonia, thiocyanate, ferric cyanide and free cyanide on biological denitrification according to temperature variation ($20{\sim}38^{\circ}C$). Batch experiments showed that denitrification rate was faster in summer ($38^{\circ}C$) than other seasons, and removal rates of pollutants increased with increasing temperature. Phenol, ammonia, thiocyanate and ferric cyanide did not inhibit denitrification even at its high concentration (200 mg/L). However free cyanide above 0.5 mg/L seriously inhibited the bilolgical denitrification reaction. Inhibitory effect of these pollutants was reduced with increasing temperature.

Degradation of Phenol by Activated Sludge Immobilized with Photo-crosslinked Resin (광경화성 수지에 고정화된 활성슬러지에 의한 페놀 분해)

  • 김선일;윤영재정경훈
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.577-585
    • /
    • 1996
  • Effects of various factors on the phenol degradation by activated sludge immobilized with the photo-crosslinked resin were investigated. The optimum pH on the degradation of phenol in both free and immobilized activated sludge was 7. When the pH of the reaction was varied from 5 to 10, the relative activity of the phenol degradation by the immobilized activated sludge was higher than that by the free activated sludge. A higher rate of phenol degradation was observed when a bead size was smaller. The phenol degradation in the free activated sludge was inhibited at the 3000 mg/L of phenol, while that in the immobilized activated sludge was maintained at the same concentration for 28 hrs without an inhibition. The degradation rates of phenol were not directly proportional to the increasing amount of immobilized beads dosage, but the phenol degradation was made in a rather short time than that for a free sludge system. The relative activities of the immobilized activated sludge after 7 runs of repeated reactions increased about 8 times as that of the first reaction. The activities for the phenol degradation remained stable for at least 80 days when the immobilized activated sludge was stored at an aerobic condition in the wastewater containing phenol. The loading rate as high as 5.59 kg-pheno1/㎥.d could have been achieved during the continuous treatment of phenol by the immobilized activated sludge.

  • PDF

Growth Responses of Crops to Wastes Derived from Some Factories (수종 공장 폐수에 대한 작물의 피해 반응)

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.161-165
    • /
    • 1997
  • This experiment were carried out to clarify the effects of several factory wastes on the emergence and seedling growth of five crop species, rice, Chinese cabbage, melon, and tomato. Wastes of three factories treated by several concentrations on the soil in which crop were seeded. In rice seedling experiments, the rice seedlings were treated with factory wastes hydroponically. Factory wastes used in the experiment were obtained from leather, phenol resin, and dye factory. The growth of rice seedlings was inhibited by each factory wastes, but the dry weight of rice seedling was increased by the low concentration below 1/16 dilution of leather factory waste. During 15 days, dry matter accumulation of rice seedlings treated with undiluted factory wastes decreased to 46.0, 51.4, -5.4% of control by treating wastes of phenol resin, leather, and dye factory respectively. The injury of crops by leather factory waste was severe in tomato but slight in barley. Waste of phenol resin factory affects highly both on Chinese cabbage and on melon. When dye factory waste was treated on each crop, all plants died in the treatments of waste solution which diluted to 1/8 of original waste. Tomato and melon were most sensitive crop species to the waste of dye factory. Although the responses of crops to each factory waste were various, the degree of injuries were more higher in vegetables than cereal crops.

  • PDF

Investigation about enzymatic properties of the gene encoding catechol 1,2-dioxygenase from Phenol-degrading, Rhodococcus sp. EL-GT

  • 이희정;이오미;김기한;박근태;박재림;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.11a
    • /
    • pp.102-104
    • /
    • 2001
  • 본 연구는 방향족 화합물질 중 페놀폐수에 대한 생물학적 처리를 위해 본 실험실에서 분리한 페놀분해능이 우수한 Rhodococcus sp. EL-GT를 이용하여 catechol 분해 catechol 1,2-dioxygenase 분해활성을 측정하였고, 이것이 ortho-pathway임을 확인할 수 있었다. 또한 다른 연구에서 보고된 Rhodococrus rhodochrous NCIMB 13259 균주의 catechol 1,2 dioxygenase를 기초로한 primer를 이용하여 PCR을 수행하였으며 이 분해 유전자의 cloning실험을 수행 중이다. 이들 실험을 통하여 Rhodoroccus sp. EL-GT의 페놀분해 균의 유전적 구조 및 특성을 검토하고 이를 이용하여 방향족 화합물의 분해능이 보다 우수한 균주의 개발을 시도하고자 한다.

  • PDF

폐수처리시설 운영 및 현황

  • 신대승
    • Environmental engineer
    • /
    • s.40
    • /
    • pp.50-53
    • /
    • 1989
  • 본 회사는 제비표 페인트 제조회사인 건설화학과 대일본 잉크화학공업(주)와 합작회사로서 1971년에 설립되어 공업용 접착제인 페놀수지를 국내 최초로 생산하여 자동차, 도료, 전자산업 발전에 이바지하였고, 각종 도로 경기장을 우레탄 수지를 생산하므로서 88올림픽 경기를 통하여 국제적으로 품질의 우수성을 인정받은 바 있습니다. 현재 반월공장은 대지가 12,523평, 건평 4,694평, 종업원 280명으로서 안양에서 '88. 10.12 이전하여 본사와 공장기능

  • PDF

As(III) Oxidation and Phenol Adsorption by the Activated Carbon Impregnated with Mn Oxide (망간산화물이 첨착된 활성탄에 의한 페놀흡착 및 비소(III) 산화)

  • Yu, Mok-Ryun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.423-429
    • /
    • 2008
  • Application of manganese-impregnated activated carbon(Mn-AC) in the treatment of synthetic wastewater containing both organic and inorganic contaminants was investigated. Phenol and As(III) was used as representative organic and inorganic contaminants, respectively. When the stability of Mn-AC at acidic condition was evaluated with variation of solution pH ranging from 2 to 4, Mn-AC was unstable below pH 3, while negligible dissolution of Mn was observed above pH 4. This stability test suggests a plausible applicability of Mn-AC in the treatment of wastewater above pH 4. Compared to AC-alone, the adsorption rates of phenol as well as adsorbed amounts of phenol by Mn-AC were slightly decreased due to the decrease of the surface area by impregnation. The maximum adsorbed amount of phenol by Mn-AC was corresponds to 75% of that by AC-alone from the adsorption isotherm study. The oxidation efficiency of As(III) by Mn-AC was greater than that by AC-alone at lower pHs while reverse trend was observed as pH increased above 7. From this work, it was found that Mn-AC could be used in the simultaneous treatment of both phenol and As(III).

Removal of As(III) and Phenol by Multi-functional Property of Activated Carbon Impregnated With Manganese (망간첨착 활성탄의 다기능성을 이용한 3가 비소 및 페놀 제거)

  • Yu, Mok-Ryun;Hong, Soon-Chul;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.52-58
    • /
    • 2008
  • Mn-impregnated activated carbon (Mn-AC) prepared at different conditions was applied in the treatment of synthetic wastewater containing both organic and inorganic contaminants. Phenol and As(III) was used as the representative organic and inorganic contaminants, respectively. After evaluation of the physicochemical characteristic and stability of Mn-AC, oxidation of As(III) as well as adsorption of phenol by activated carbon(AC) and Mn-AC were investigated in a batch reactor. To investigate the stability of Mn-AC, dissolution of Mn from each Mn-AC was measured pH ranging from 2 to 4. Although Mn-AC was unstable at a strong acidic condition, the dissoluted Mn was below 3 ppm at pH 4. XRD analysis of Mn-AC indicated that the mineral type of the impregnated manganese was $Mn_2O_3$. From the simultaneous treatment of As(III) and phenol by AC and Mn-AC, As(III) oxidation by Mn-AC was greater than that by AC at lower pH, while the reverse order was observed at higher pH. After impregnation of Mn onto AC, 13% decrease of the surface area was observed, causing 8% reduction of phenol removal. Considering removal properties of As(III) and phenol, Mn-AC could be applied in the simultaneous treatment of wastewater contaminated with multi-contaminants.