• Title/Summary/Keyword: 펌프의 성능

Search Result 1,416, Processing Time 0.03 seconds

진공펌프 진단기술 개발

  • Im, Jong-Yeon;Gang, Sang-Baek;Sin, Jin-Hyeon;Kim, Wan-Jung;Jeong, Wan-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.365-365
    • /
    • 2011
  • 현재 지식경제부의 전략기술개발사업의 일환으로 진행 중인 "초고진공펌프 개발" 과제 중 제 3 세부 과제인 "고진공펌프종합특성평가시스템 설계, 진단기술 개발" 과제에서 추진된 연구결과를 소개한다. 국내 초고진공펌프 개발 수준의 선진화를 위한 기본적인 초석은 현존하는 모든 진공 발생 장치의 국제적 신뢰성이 있는 완벽한 성능평가의 구현에 있다고 할 수 있다. 현재 한국표준과학연구원에서 구축되고 있는 저진공/고진공펌프의 성능평가장치의 개요를 소개하면서 향후 크라이오펌프 및 터보분자펌프의 개발 및 상용화 단계에서 필요한 국제적 규격 및 내부적 가이드라인을 기 수행되고 있는 측정 데이터베이스에 근거하여 제시하고자 한다.

  • PDF

극저온 맥동관 냉동기 크라이오펌프 기술 개발 현황

  • Yu, Jae-Gyeong;Gang, Sang-Baek;No, Yeong-Ho;Go, Deuk-Yong;Park, Seong-Je;Go, Jun-Seok;In, Sang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.92-92
    • /
    • 2012
  • 최근 반도체 산업 경기의 활황에 따라 반도체 생산 설비 또한 꾸준히 증설되어가는 추세이며 고진공 펌프의 수요 또한 점차적으로 증가하고 있는 현실이다. 하지만, 국내 기술의 부족으로 고진공 펌프는 대부분 해외로부터의 수입에 의존하고 있다. 반도체 생산 설비는 매우 보수적인 설비로써 새로 개발되는 고진공 펌프가 반도체 생산 설비에 사용되기 위해서는 원천기술, 상품화 기술 및 신뢰성 기술을 확보해야 하며, 특히 한미/한일/한-EU FTA 등에 대비하여 제품의 국산화가 시급한 실정이다. 이에 고진공펌프의 수입이 급증할 것으로 예상되어 국내 진공업체에서도 크라이오펌프의 개발이 진행되고 있다. 본 연구에서는 지식경제부 제조기반 산업원천기술개발사업에 주관기관으로 수행하여 한국기계연구원 및 한국원자력연구원과 급속재생형 저진동 크라이오펌프의 기술 개발을 통해 전량 수입하는 크라이오펌프를 국산화를 도모 하고자 한다. 크라이오펌프의 주요 생산업체는 미국기업의 CTI사이며, 상품화 기술의 성능 확보를 위한 CTI사의 GM 극저온 냉동기와 현재 개발 및 상용화 준비를 하는 극저온 맥동관 냉동기에 대해 성능평가 지표를 제시하며, 신뢰성 확보를 위한 한국과학기술원 나노종합팹센터의 스퍼터 공정장비에 대한 CTI사 크라이오펌프와 상용화를 위한 개발품의 공정 현장시험에 대해 소개하고자 한다.

  • PDF

An Empirical Study on the Standard Re-establishment of Water Discharge Performance for the Fire Engine Pump (소방차 펌프의 방수성능 기준 재정립을 위한 실증적 연구)

  • Min, Se-Hong;Kwon, Yong-Joon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.85-91
    • /
    • 2012
  • This paper analyzed firefighting officers' use situations such as the use time, maximum working pressure, hose diameter, etc. of fire pumps at fire sites and carried out various performance tests by pressures, hose diameters and quantities of fire pumps based on its results because the waterproof performance criterion for a fire pump installed in a fire engine is different from the operation situations at the site and is not clearly prescribed. As a result of site survey, the site uses a higher pressure than the standard water discharge pressure (0.85 MPa) or the high-pressure water discharge pressure (1.4 MPa) prescribed by the approval Standard of the fire pump performance on fire truck. In addition, as a result of pump performance test, the discharged water flow rate, water discharge pressure, etc. was measured to be very different from the currently prescribed the approval standard depending on the hose diameter and firefighting nozzle, so the result of this study proposes a new standard.

Analysis Study of Seasonal Performance Factor for Residential Building Integrated Heat Pump System (주거용 건물에서의 히트펌프 시스템 연성능 평가에 관한 연구)

  • Kang, Eun-Chul;Min, Kyoung-Chon;Lee, Kwang-Seob;Lee, Euy-Joon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • Heat pump unit performance is represented by the COP(Coefficient of Performance) and expressed by the one point design condition according to KS C 9306. However, when heat pump operated to the real buildings, the simulations are changed continuously according to the actual weather conditions, the building load and heat pump source conditions. The purpose of this paper is to evaluate the APF(Annual performance factor) for a climate dependent building integrated air-to-air heat pump system in major cities in Korea. TRNSYS simulation tool with an international MV standard based IPMVP 4.4.2 was utilized to perform the annual performance analysis. The APF with the multi-performance data based method was calculated as 2.29 for Daejeon residential building case while Busan residential building case appeared as the highest with 2.36.

Performance characteristics of the Coil Deposition Type Heat Pump using Geothermal Energy (지열을 이용한 코일 침적형 히트펌프의 성능 특성)

  • Oh, Hoo-Kyu;Lee, Dong-Gun;Jeon, Min-Ju;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.437-444
    • /
    • 2012
  • This paper describes the experimental characteristics on cooling and heating performance of the coil deposition type heat pump using geothermal energy to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling degree, evaporation and condensation temperature in the coil deposition type heat pump using geothermal energy. The main results are summarized as follows : As the evaporation temperature and subcooling degree of the coil deposition type heat pump using geothermal energy increases, and the condensation temperature decreases, the COP of this system increases. The subcooling degree, evaporation and condensation temperature of the coil deposition type heat pump have an effect on cooling and heating COP of this heat pump. Therefore, it is a necessary to determine the optimum operation conditions for the highest COP of this heat pump presented in this study.

Prediction of GHP Performance Using Cycle Analysis (사이클 해석을 통한 GHP 성능 예측)

  • Cha, Woo Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon;Jeon, Si Moon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper a prediction method of GHP performance is proposed for increasing design accuracy. Two compressors with different capacity and 2311cc gas engine are used for prediction and the target capacity of GHP is 25HP. For predicting GHP performance at first the operation points are randomly selected and then as compared with compressor performance date and heat exchanger characteristic, more accurate operating points are decided through recursive calculation. Lastly engine performance date is used for calculating gas consumption volume. Predicting heating mode performance of GHP, evaporator is separated to the two section of absorbing heat in outdoor air and in engine. From the experimental results, it was found that the simulation model is good for the predicting GHP efficiency and the difference of predicted and measured efficiency is less than 5%.

로켓엔진용 연료펌프 전산유동해석

  • Noh, Jun-Gu;Choi, Chang-Ho;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.183-190
    • /
    • 2004
  • The performance analysis of a fuel pump for a liquid rocket engine has been performed numerically on its design condition. A commercial three-dimensional Navier-Stokes flow solver has been used for the computation. All of the fuel pump components - inducer, impeller, volute and secondary flow passages - are included in computation for the accurate estimation of the leakage flow rate which affects the performance and axial thrust. A pitchwise-averaged mixing plane method was used on the boundaries among the fuel pump components to save computational time. The predicted overall performance satisfied the design requirement. However, the axial thrust exceeded a permissible limit. In order to reduce the axial thrust, the secondary flow passage design has been changed. With this change, the axial thrust level has been reduced to 30% as compared with the original value.

  • PDF

A Study on the Pump Efficiency Measurement Using the Thermodynamic Method (열역학적 방법을 사용한 펌프 효율 측정에 관한 연구)

  • Bae, Cherl-O;Vuong, Duc-Phuc;Lee, Hwi-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • Carbon emission generated by energy issues is one of the major problems which all countries concern. The International Energy Agency recommends to improve 15-30[%] of energy efficiency than now. Government has pushed the domestic energy saving policies and incentives and penalties were also given in that direction. Pumps are widely used to transfer fluids and they consume at least 20[%] power of each nation. Their loss of energy is huge if they have been operated at low efficiency for long time. Low efficiency of these pumps is often due to incorrect design or degradation. Pump efficiency can be measured to estimate energy loss. If it is low, the pump may be repaired or replaced with new one. This paper introduces thermodynamic method to measure pump efficiency using only two kinds of sensors for temperature and pressure. It can calculate best efficiency point(BEP) of actual systems easily and fast. Its values were compared with the real performance curve provided by pump maker and we got almost similar performance curves from the repeated experiment.

Development of Fuel Pump Lower Housing for Ethanol Engine (에탄올엔진용 연료펌프 하우징 개발)

  • Lee, Byeong-Hoon;Kim, Chang-Su;Sin, Kyeong-Sick;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.521-524
    • /
    • 2011
  • 본 논문에서는 냉간단조된 연료펌프와 다이캐스팅된 연료펌프에 대한 성능 실험을 수행하였다. 수행결과 냉간단조와 다이캐스팅으로 가공된 하부하우징으로 제작된 연료펌프는 회전수마다 미미한 차이를 보이지만, 전체적으로 동등한 성능을 보이고 있다.

  • PDF

Performance Analysis of an Earth Coupled Heat Pump System Operated by an Engine(II) - Performance Analysis of a Vapour Compression type Compact Heat Pump - (엔진구동 지열 열펌프의 성능 분석(II) - 소형 증기압축식 열펌프의 성능 분석 -)

  • 김영복;송대빈;손재길
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.501-512
    • /
    • 1999
  • In this study, the coefficient of performance of a vapour compression heat pump system was analyzed for the evaluation of the heat pump performance. A water-to-air heat pump was assembled and tested by changing the level of the compressor driving speed and the air mass flow rate during air heating process. The coefficient of performance for air heating was 2.6~3.8 and that for water cooling was 1.0~1.4. The coefficient of performance was not depending on the levels of the compressor driving speed or levels of the air mass flow rate, but on the temperature of the air and water. The coefficient of performance for air heating increased by about 0.2 with the water temperature increasing by 1$^{\circ}C$.

  • PDF