• Title/Summary/Keyword: 펄럭임

Search Result 3, Processing Time 0.021 seconds

Study on the flickering behavior of propane/air and methane/air premixed flame confined in a tube (관내 프로판/공기와 메탄/공기 화염의 펄럭임 현상에 대한 연구)

  • Guahk, Young-Tae;Lee, Dae-Keun;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.26-31
    • /
    • 2006
  • Flickering behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated. Unsteady behaviors of the flame were monitored by a high speed ICCD camera and the flickering frequency was defined as the number of flame curvatures passing a fixed spatial point in a second. Unlike previous studies in which flames are in open condition so that the flickering mechanism is an unstable interaction of hot buoyant products with the ambient air, flames in this study are surrounded by a tube which means they are not open to ambient air, so that there is no interaction between hot buoyant products and ambient air. Despite the fact, there exists flickering phenomena and the flickering frequency ranges from 10 Hz to 50 Hz which is wider compared to previous studies. We relate the flickering mechanism to flame-generated vorticity and analytic solution for locally approximated flow is used. As a result, the relationship between flickering wavelength and dimensionless vorticity is acquired and the cause of higher range of flickering frequency is explained.

  • PDF

Experimental Study on the Behaviors of Lean Premixed Flame of Propane/Air and Methane/Air in a Tube (관내 희박 예혼합 프로판/공기와 메탄/공기 화염의 거동에 관한 실험적 연구)

  • Guahk, Young-Tae;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.2
    • /
    • pp.35-41
    • /
    • 2005
  • Behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated experimentally varying the mean velocity from 10 to 140 cm/s and the equivalence ratio from 0.45 to 0.8. Behaviors of both flames are divided into five regions of stable, flash-back, tail-out, flickering and vibrating. General characteristics of each region and Le number effect are investigated. Two main instabilities, flickering and vibration, are both unstable but the instability mechanism, the frequency and the amplitude of pressure fluctuation are different. In the edge of the vibrating region, pressure fluctuation repeats generation and extinction. Repeated growth and decrease of the amplitude of pressure fluctuation are explained by Rayleigh#s index.

  • PDF

Fluttering Characteristics of Free-falling Plates (자유낙하하는 판의 fluttering 특성 연구)

  • Hong, Seulki;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • Abstract In the present study, the characteristics of kinematics and dynamics in the fluttering motion of free-falling plates are investigated at Reynolds number of $10^5$. We record quasi-two-dimensional trajectories of free-falling plates with and without superhydrophobic coating using high-speed camera, and compute the drag and lift forces by trajectory analysis. Translational and angular velocities are modeled as harmonic functions with specific phase differences. In particular, periodic mass elevations near turning points are explained using the suggested models. At each turning point, a sudden drop in lift and a rapid increase in drag occur simultaneously due to fast increase in angle of attack. However, the lift is increased over the buoyancy-corrected weight of plate during gliding flight, resulting in periodic mass elevations near turning points. Superhydrophobicity is shown to increase lift but to reduce drag on a fluttering plate, resulting in the decrease of mean descent speed.