• Title/Summary/Keyword: 퍼지-신경회로망

Search Result 213, Processing Time 0.024 seconds

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.

Design of Neuro-Fuzzy Controller for Load Frequency Control of Power Line (계통의 부하주파수 제어를 위한 뉴로-퍼지제어기 설계에 관한 연구)

  • Lee, Oh-Keol;Kim, Sang-Hyo
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.373-376
    • /
    • 2005
  • 본 논문에서는 이와 같은 요청에 부합되는 강인한 처지제어기를 얻고자, 다층 신경회로망을 이용하여 퍼지제어기 멤버쉽 함수의 전건부 및 후건부 파라미터들을 시스템에 알맞게 자기 조정하기 위해 최급구배법(Steepest Gradient Method)에 근거한 오차 역전파 알고리즘으로 적응 학습시킬 수 있는 뉴로-퍼지제어기 (Neuro-Fuzzy Control : NFC)의 구조 및 알고리즘을 제안하였다.

  • PDF

Identification of fuzzy Model using Back-propagation : Electric Power Load Forecasting (역전파학습을 이용한 퍼지모델의 파라메터 동정: 전력부하 예측)

  • 김이곤;류영재;김홍렬;박창석;곽호철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.186-192
    • /
    • 1995
  • 본 연구에서는 퍼지 클러스터링 알고리즘과 변수선택 방법을 이용하여 모델의 구조 동정을 행하고, 신경회로망의 Back-propagation 학습방법을 이용하여 파라메터동정을 행하 는 새로운 퍼지모델링 알고리즘을 제안하였다. 실제 데이터를 이용하여 전력부하예측시스템 을 설계하였으며 그 결과 타당성을 입증하였다.

  • PDF

Sensorless MPPT Control of a Grid-Connected Wind Power System Using a Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 계통연계형 풍력발전 시스템의 센서리스 MPPT 제어)

  • Lee, Hyun-Hee;Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.484-493
    • /
    • 2011
  • The MPPT algorithm using neuro-fuzzy controller is proposed to improve the performance of fuzzy controller in this paper. The width of membership function and fuzzy rule have an effect on the performance of fuzzy controller. The neuro-fuzzy controller has the response characteristic which is superior to the existing fuzzy controller, because of using the optimal width of the fuzzy membership function through the neural learning. The superior control characteristic of a proposed algorithm is confirmed through simulation and experiment results.

A Study on Maekjin system and Yangdorak Diagnosis system by using Neuro-Fuzzy method in Korean Traditional Medicine (뉴로-퍼지 방법을 이용한 한방 맥진 및 양도락 진단 시스템에 관한 연구)

  • 김병화;한권상;이우철;사공석진;안현식;김도현
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.41-53
    • /
    • 2000
  • In this paper, the Maekjin and the Yangdorak Diagnosis algorithm by using a neuro-fuzzy method is proposed and it is implemented on the DSP-based system. Maekjin is measured by 3-channels of the Maekjin board through Maekjin probe which is attached on Chon, Kwan and Chuk of patient's wrist. First, we experiment Chon, Kwan and Chuk, 3-parts simultaneously and second perform one part of Chon, Kwan and Chuk respectively, The experimental results show that the Maekjin signal is measured precisely with any Maekjin probe. In Yangdorak diagnosis, the pulse generated by electric stimulator stimulates a portion of body and the response signal is measured through electrodes which is attached on representative points of 12 kyungmaks. The experimental methods are (1) 1 channel-measure, (2) 2 channels-measure, (3) 6 channels-measure and (4) 24 channels-measure. A fuzzy diagnosis is performed and neural networks is learned using fuzzy values as inputs, and we show that neuro-fuzzy diagnosis method is performed well.

  • PDF

Estimation and Control of Speed of Induction Motor using FNN and ANN (FNN과 ANN을 이용한 유도전동기의 속도 제어 및 추정)

  • Lee Jung-Chul;Park Gi-Tae;Chung Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.77-82
    • /
    • 2005
  • This paper is proposed fuzzy neural network(FNN) and artificial neural network(ANN) based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed control and estimation of speed of induction motor using fuzzy and neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the experimental results to verify the effectiveness of the new method.

Sketch Feature Extraction Through Learning Fuzzy Inference Rules with a Neural Network (퍼지규칙의 신경망 학습을 통한 스케치 특징점 추출)

  • Cho, Sung-Mok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.4
    • /
    • pp.1066-1073
    • /
    • 1998
  • In this paper, we propose a new efficient operator named DBAH (difference between arithmetic mean and harmonic mean) and a technique for extracting sketch features through learning fuzzy inference rules with a neural network. The DBAH operator provide some advantages; sensitivity dependence on local intensities and insensitivity on small rates of intensity change in very dark regions. Also, the proposed fuzzy reasoning technique by a neural network has a good performance in extracting sketch features without human intervention.

  • PDF

Extreme Learning Machine based Fuzzy Pattern Classifier for Face Recognition (얼굴인식을 위한 ELM 기반 퍼지 패턴분류기)

  • Oh, Sung-Kwun;Roh, Seok-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1369-1370
    • /
    • 2015
  • 본 논문에서는 얼굴 인식을 위하여 인공 신경망의 일종인 Extreme Learning Machine의 학습 알고리즘을 기반으로 하여 지능형 알고리즘인 퍼지 집합 이론을 이용하여 주변 노이즈에 매우 강한 특성을 보이며 학습 속도가 매우 빠른 새로운 패턴 분류기를 제안한다. 제안된 퍼지 패턴 분류기는 기존 신경회로망의 학습 속도에 비해 매우 빠른 학습 속도를 보이며, 패턴 분류기의 일반화 성능이 우수하다고 알려진 Extreme Learning Machine의 특성을 퍼지 집합 이론과 결합하여 퍼지 패턴 분류기의 일반화 성능을 개선하였다. 제안된 퍼지 패턴 분류기는 얼굴 인식 데이터를 이용하여 성능을 평가 하였다.

  • PDF

Nonlinear Controller Design by Hybrid Identification of Fuzzy-Neural Network and Neural Network (퍼지-신경회로망과 신경회로망의 혼합동정에 의한 비선형 제어기 설계)

  • 이용구;손동설;엄기환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.127-139
    • /
    • 1996
  • In this paper we propose a new controller design method using hybrid fuzzy-neural netowrk and neural network identification in order ot control systems which are more and more getting nonlinearity. Proposed method performs, for a nonlinear plant with unknown functions, hybird identification using a fuzzy-neural network and a neural network, and then a stable nonlinear controller is designed with those identified informations. To identify a nonlinear function, which is directly related to input signals, we can use a neural network which is satisfied with the proposed stable condition. To identify a nonlinear function, which is not directly related to input signals, we can use a fuzzy-neural network which has excellent identification characteristics. In order to verify excellent control performances of the proposed method, we compare the porposed control method with a conventional neural network control method through simulations and experiments with one link manipulator.

  • PDF

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.