• 제목/요약/키워드: 퍼지-신경회로망

검색결과 213건 처리시간 0.03초

적응형 뉴로-퍼지 기법을 이용한 수문자료 결측치 추정에 관한 연구 (A Study on the Estimation of Missing Hydrological Data Using Adaptive Network-based Fuzzy Inference System(ANFIS))

  • 신희재;이태희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.264-264
    • /
    • 2020
  • 최근 기후변화로 우리나라는 과거에 비해 태풍이나 국지성 집중호우 및 가뭄 등 극심한 수문현상이 빈번하게 발생하고 그 피해가 더욱 커지고 있는 추세이다. 특히 우리나라의 경우 산지가 많으며 대부분의 하천이 유역면적이 작고 유로연장이 짧아 단시간에 유출이 발생하며 수문학적 특성이 연중 큰 편차를 보이고 있다. 이러한 이상기후에 따른 수문현상 파악 및 피해 경감을 위해 신뢰성 있는 수문자료는 매우 중요하다. 따라서 수문자료에 대한 품질관리는 필수적이지만 자료 결측 및 오측에 대한 신뢰성 높은 품질관리가 이뤄지지 못하고 있는 실정이다. 현재 수위자료의 결측이 발생한 경우 해당 관측소의 수위 자료를 사용해 선형보간 및 운형자법으로 수정하거나 상·하류 관측소의 관계를 이용하여 회귀분석을 통해 자료 결측의 수정 및 보완을 수행하는 등 담당자의 주관적 판단에 의존하고 있다. 본 논문에서는 신뢰성 높은 수문자료의 결측치 보완 및 예측을 위한 방안을 제시하고자 상류의 관측소의 수문자료를 이용한 하류의 단시간 수문 자료예측에 관한 연구를 수행하였다. 이를 위해 자료지향형 모델인 적응형 뉴로-퍼지 기법(Adaptive Network-based Fuzzy Inference System, ANFIS)을 이용한 모형을 적용하였다. 기존의 연구에서 가장 일반적으로 사용되는 물리적 모형은 수문자료를 활용하여 수위 및 유출을 산정함에 있어 매개변수의 결정이 어렵고 많은 오차들을 내포하고 있다. 본 연구에서 사용한 ANFIS는 입력자료와 출력자료만을 고려하여 구축할 수 있기 때문에 자료 수집단계에서 유역의 물리적 자료 및 지형 자료와 같은 방대한 양의 자료 수집이 필요가 없다. 이후 모형이 구축이 된다면 입·출력 자료만을 이용하여 신뢰성 높은 결과를 획득할 수 있지만 입력 자료의 품질에 따라 결과가 좌우되기 때문에 자료의 구성이 매우 중요하다. 본 연구에서는 ANFIS를 통해 무주남대천 유역의 무주군(여의교) 관측소의 수위자료를 입력자료를 사용하여 하류에 위치한 무주군(취수장) 관측소의 수문자료의 결측 보완 및 예측하는 모형을 구축하고 모형의 구조 변화를 통해 가장 정확도 높은 모형을 결정하였다.

  • PDF

ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계 (Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm)

  • 김현기;진용탁;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.173-178
    • /
    • 2014
  • 본 연구에서는 ASM기반 $(2D)^2$ 하이브리드 전처리 알고리즘을 이용한 얼굴인식 분류기와 그것의 설계방법론을 소개한다. 얼굴인식을 위한 이미지는 외부 환경에 쉽게 영향을 받기 때문에, 전처리 단계로 이러한 문제를 해결하기 위해서 ASM을 사용하였다. 특히 사람 얼굴의 특징 추출을 목적으로 널리 이용되고 있다. ASM을 이용해 얼굴영역을 추출 한 뒤 PCA와 LDA를 이용한 $(2D)^2$ 하이브리드 전처리 알고리즘을 이용하여 차원을 축소한다. 전처리 알고리즘을 통한 얼굴데이터는 제안된 다항식 기반 방사형 기저함수 신경회로망의 입력으로 사용된다. 기존의 신경회로망과는 달리 제안된 지능형 패턴 분류기는 강인한 네트워크 특성을 가지며, 예측능력이 우수할 뿐만 아니라 다차원 입출력에 대한 문제도 해결했다. 분류기의 중요한 필수 설계 파라미터(행의 고유벡터의 수, 열의 고유벡터의 수, 클러스터의 수, 퍼지화 계수)는 ABC알고리즘에 의해 최적화 되어진다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다.

지식정보와 신경회로망을 이용한 가압경수로 증기발생기 수위제어 (Water Level Control of PWR Steam Generator using Knowledge Information and Neural Networks)

  • 배현;우영광;김성신;정기수
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.322-327
    • /
    • 2003
  • 가압경수로 원자력 발전소의 증기발생기 수위는 유량의 변동에 상반되는 수축(shrink)과 팽창(swell) 효과 등의 특성을 가지고 있으므로 제어가 어려운 대상으로 알려져 있다. 본 논문에서는 신경망을 이용하여 원자력발전소에서 사용되고 있는 두 개의 PI 제어기 중 부적절한 게인으로 조정된 제어기를 먼저 선택하고, 선택된 제어기의 게인을 퍼지 논리를 적용하여 조정하도록 구성하였다. 게인 조정을 위해 사용되는 기본 정보는 수위, 급수량, 그리고 증기량이다. 이 세 가지의 정보를 바탕으로 신경망을 통해 수위 제어기 또는 급수량 제어기 둘 중 하나의 제어기가 선택한 후 퍼지 자기동조기(self-tuner)를 이용하여 PI 제어기의 게인을 알맞게 조정하게 된다. 퍼지 자기동조기의 규칙은 증기발생기의 상태를 표현하는 입ㆍ출력 데이터의 특성으로부터 추출하였다. 이상의 두 과정을 통해 적절한 제어기를 선택하고, 선택된 제어기의 게인을 알맞게 조정하는 것이 본 논문의 목적이다.

퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계 (Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA)

  • 김봉연;오성권;김진율
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.56-63
    • /
    • 2016
  • 본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.

축산생육환경 유해가스 모니터링을 위한 무선가스측정시스템 개발 (Development of Gas Measurement System for the Harmful Gases at Livestock Barn)

  • 김영웅;백승현;박홍배
    • 전자공학회논문지
    • /
    • 제49권9호
    • /
    • pp.314-321
    • /
    • 2012
  • 축산생육환경에서 다양한 경로로부터 발생하는 유해가스는 가축 및 농가작업자에게 직/간접 적으로 영향을 미칠 수 있으며, 점차적인 사육조밀화와 동절기 밀폐환경에 장기간 노출 시 치명적일 수 있다. 본 논문에서는 가축분뇨로부터 발생하는 암모니아, 황화수소, 휘발성유기화합물 가스 등을 모니터링하기 위해 무선가스센서노드와 퍼지 최소-최대 신경회로망을 이용한 가스인식 소프트웨어로 이루어진 가스측정시스템을 제안한다. 제안한 시스템의 성능을 평가하기 위해 가스측정실험환경을 구축하여 제작한 무선가스센서노드로 가스측정실험을 수행하고, 개발한 가스인식 소프트웨어로 대상가스 분류시험을 통해 성능을 입증한다.

필드로봇을 위한 힘방향 조이스틱 개발 (Development of Force Reflecting Joystick for Feild Robot)

  • 송인성;안경관;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 1997
  • Abstract: In teleoperation field robotic system such as hydraulically actuated robotic excavator, the maneuverability and convenience is the most important part in the operation of robotic excavator. Particularly the force information is important in dealing with digging and leveling operation in the teleoperated excavator. Excavators are also subject to a wide variation of soil-tool interaction forces. This paper presents a new force reflecting joystick in a velocity-force type bilateral teleoperation system. The master system is electrical joystick and the slave system IS hydraulically actuated cylinder with linear position sensor. Particularly Pneumatic motor is used newly in the master joystick for force reflection and the information of the pressure of salve cylinder is measured and utilized as the force feedback signal. Also force-reflection gain greatly affects the excavation performance of a hydraulically actuated robotic system and it is very difficult to determine it appropriately since slave excavator contacts with various environments such as from soft soil to rock. To overcome this, this paper proposes a force-reflection gain selecting algorithm based on artificial neural network and fuzzy logic.

  • PDF

LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어 (High Performance Speed Control of IPMSM with LM-FNN Controller)

  • 남수명;최정식;정동화
    • 전력전자학회논문지
    • /
    • 제11권1호
    • /
    • pp.29-37
    • /
    • 2006
  • 본 논문에서는 LM-FNN(learning Mechanism-Fuzzy Neural Network) 제어기를 이용하여 IPMSM 드라이브의 고성능 속도를 제어한다. 고성능제어를 위하여 신경회로망과 퍼지제어를 혼합 적용한 FNN을 설계한고 더욱 성능을 개선하기 위하여 학습 메카니즘을 이용하여 FNN 제어기의 파라미터를 갱신시킨다. 그리고 ANN(Artificial Neural Network)을 이용하여 IPMSM 드라이브의 속도 추정기법을 제시한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다. 그리고 추정된 속도를 지령속도와 비교하여 전류제어와 공간벡터 PWM을 통하여 IPMSM의 속도를 제어한다. 본 연구에서 제시한 LM-FNN과 ANN 제어기의 제어특성과 추정성능을 분석하고 그 결과를 제시한다.

복합 특징과 결합 인식기에 의한 필기체 숫자인식 (Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier)

  • 박중조;송영기;김경민
    • 한국정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.14-22
    • /
    • 2001
  • 필기체 숫자는 개인에 따라 필체가 매우 다양하므로 단일 특징과 단일 분류기를 사용하여 오프라인 필기체 숫자인식을 수행할 경우 높은 인식률을 얻기가 어렵다. 이에 본 논문에서는 복합 특징과 결합 인식기를 사용하여 필기체 숫자 인식의 인식률을 향상시키는 방안을 제시한다. 인식률의 향상을 위해, 먼저 상호 보완적인 특징들-방향특징, 교차점특징, 망특징-을 선정하고 이를 사용하여 숫자영상의 전역적 및 국부적 특징을 갖는 세 종류의 새로운 복합 특징을 구성한다. 그리고 패턴 인식기로는 세 개의 신경회로망 분류기를 퍼지 적분으로 결합한 결합 인식기를 사용한다. 본 인식기의 성능 평가를 위해 Concordia 대차의 무제약 필기체 숫자 데이터베이스를 사용하여 실험한 결과 97.85%의 인식률을 달성하였다.

  • PDF

규칙 생성 시스템을 위한 새로운 연속 클러스터링 조합 (New Sequential Clustering Combination for Rule Generation System)

  • 김승석;최호진
    • 인터넷정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 논문에서는 수치적 데이터를 이용하여 규칙을 생성하는 시스템에 대해 순차적인 클러스터링 방법을 제안한다. 단일 클러스터링 기법은 방대하고 복잡한 공간 내에서는 원하는 결과를 얻지 못할 수 있다. 이런 문제점을 해결하기 위해 제안된 방법은 서로 다른 클러스터링 기법을 순차적으로 수행하여 장점들은 활용하고 단점들은 보안하는 형태를 제안하였다. Mountain 클러스터링과 Chen 클러스터링을 이용하여 non-parametric 공간에서 자율적으로 클러스터를 구성하였고, global 공간과 local 공간으로 역할을 분담하여 클러스터를 추정한다. 추정된 클러스터들은 신경회로망이나 퍼지 시스템과 같은 지능 시스템의 구조와 초기 파라미터 결정에 활용될 수 있으며, 확장하여 헬스케어와 의료 분야에서의 결정 제공 시스템의 학습에 도움을 줄 수 있다. 제안된 방법을 유용성을 시뮬레이션을 통해 보이고자 한다.

라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계 (Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy)

  • 김은후;배종수;오성권
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.