• Title/Summary/Keyword: 퍼지 TOPSIS

Search Result 16, Processing Time 0.029 seconds

A decision making framework model for the selection of a RP using hybrid multiple attribute decision making techniques (3차원 조형장비 선정을 위한 복합 다요소 의사결정 구조 모델 개발에 관한 연구)

  • Byun, Hong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2008
  • The purpose of this study is to provide a decision support to select an appropriate rapid prototyping(RP) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model for molding, material property, build time and part cost that greatly affect the performance of RP machines. However, the selection of a RP is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate RP machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify RP machines that the users consider. After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of RP machines.

  • PDF

An Efficient Decision Maki ng Method for the Selectionof a Layered Manufacturing (3차원 조형장비 선정을 위한 효율적인 의사결정 방법)

  • Byun, Hong-Seok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2009
  • The purpose of this study is to provide a decision support to select an appropriate layered manufacturing(LM) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model far molding, material property, build time and part cost that greatly affect the performance of LM machines. However, the selection of a LM is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate LM machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify LM machines that the users consider After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of LM machines.

Development and Application of Robust Decision Making Technique Considering Uncertainty of Climatic Change Scenarios (기후변화 시나리오의 불확실성을 고려하기위한 로버스트 의사결정 기법의 개발 및 적용)

  • Jun, Sang-Mook;Chung, Eun-Sung;Lee, Sang-Ho;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.897-907
    • /
    • 2013
  • Climate change is expected to worsen the depletion of streamflow in urban watershed. In this study, we therefore considered the treated wastewater (TWW) use as an adaptation strategy and devised a framework to identify prioritized areas for TWW use. An integrated framework that includes hydrological factors as well as social and environmental components were employed to determine the criteria for decision making. Fuzzy theory was employed to consider the uncertainties in the climate change scenarios and the weights of the performance value. All alternatives were evaluated using the fuzzy TOPSIS method. In addition, statistical method and decision making methods under complete uncertainty were used for robust decision making. As a result, ranking the alternatives using the fuzzy TOPSIS method and robust approach such as maximin, maximax, Hurwicz and equal likelihood criterion mitigated the level of uncertainty and ambiguity in each alternative. The finding of this study can be helpful in prioritizing water resource management projects considering various climate change scenarios.

An Application of Fuzzy AHP and TOPSIS Methodology for Ranking the Factors Influencing FinTech Adoption Intention: A Comparative Study of China and Korea (FinTech 채택 의도에 영향을 미치는 요소의 순위 결정을 위한 Fuzzy AHP 및 TOPSIS 방법론의 적용 : 중국과 한국의 비교 연구)

  • Mu, Hong-Lei;Lee, Young-Chan
    • Journal of Service Research and Studies
    • /
    • v.7 no.4
    • /
    • pp.51-68
    • /
    • 2017
  • Financial technology (FinTech) is an emerging financial service sector include innovations in financial literacy and investment, retail banking, education, and crypto-currencies like bitcoin. One of the crucial branch of financial technology-third-party payment (TPP) is undergoing rapid growth, with online/mobile systems replacing offline financial systems. System quality and user attitudes are key perceptions driving third-party payment usage, the importance of these perceptions, however, may be different with countries as users' thinking varies from country to country. Thus, the purpose of this study is to elaborate how factors differ from China to Korea by drawing on the unified theory of acceptance and use of technology (UTAUT2). Additionally, this study also aims to propose a multi-attribute evaluation of the third-party online payment system based on analytic hierarchy process (AHP), fuzzy sets and technique for order performance by similarity to ideal solution (TOPSIS), to examine the relative importance of the perceptions influencing new technology adoption intention. The results showed that the price value has the most significant influence on Chinese perceptions, while the perceived credibility has the most significant effect on Korean perceptions. Sub-criteria also performs different results to Chinese and Korean third-party online payment system.

Multi-criteria decision making application methodologies for Water Resources Planning (수자원 계획수립을 위한 다기준 의사결정기법의 적용 방안)

  • Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.227-227
    • /
    • 2012
  • 본 연구는 수자원계획 문제에서 다기준 의사결정기법을 적용할 때 발생할 수 있는 두 가지 문제에 대해 분석하였다. 첫 번째는 다기준 의사결정기법 선택의 차이가 결과에 어느 정도 영향을 미칠 수 있는지를 제시하였고 두 번째는 평가기준에 대한 가중치와 대안들의 평가치에 대한 불확실성을 최소화하기 위해 민감도 분석을 수행하는 절차를 제시하였다. 첫 번째 문제를 위해 가중합계법, Compromise Programming, 계층화분석과정, 수정된 계층화 분석과정, 가중곱방법, TOPSIS, ELECTRE-2, Regime 방법을 사용하였다. 또한 최근 사용빈도가 높은 삼각형 Fuzzy 숫자와 다기준 의사결정기법을 결합한 기법에 대해서도 분석하였는데 Fuzzy WSM, Fuzzy 계층화분석과정, Fuzzy 수정 계층화분석과정, Fuzzy TOPSIS, Fuzzy Compromise Programming을 검토하였다. 분석결과 평가기준에 대한 가중치 조건과 표준화 방법이 동일한 상황에도 불구하고 조금씩 다른 순위를 제시하는 것으로 나타났다. 또한 다양한 MCDM 기법들을 적용해도 동일한 순위로 나타나는 대안들이 있었다. 따라서 다기준 의사결정기법을 사용한 수자원 관리계획을 수립할 때에는 다양한 분석기법을 활용해서 기법의 선택으로 인한 불확실성을 최소화해야 한다. 두 번째 문제는 평가기준에 대한 가중치와 대안의 효과 정량화 자료의 불확실성을 극복하기 위해 각각에 대한 민감도 분석을 수행하였다. 본 연구는 유량확보와 수질개선을 위한 수자원 계획 수립을 위해 가중합계법을 이용한 문제에 두 경우의 민감도 분석을 모두 수행하였다. 이 과정에서 결정계수와 민감도 계수를 산정하여 이용하였다. 본 연구는 향후 수자원 관리 및 계획 분야에서 다기준 의사결정기법을 적용할 때 사용될 수 있는 기초 가이드라인이 될 것이다.

  • PDF

Project Selection of Six Sigma Using Group Fuzzy AHP and GRA (그룹 Fuzzy AHP와 GRA를 이용한 식스시그마 프로젝트 선정방안)

  • Yoo, Jung-Sang;Choi, Sung-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.149-159
    • /
    • 2019
  • Six sigma is an innovative management movement which provides improved business process by adapting the paradigm and the trend of market and customers. Suitable selection of six sigma project could highly reduce the costs, improve the quality, and enhance the customer satisfaction. There are existing studies on the selection of Six Sigma projects, but few studies have been conducted to select the correct project under an incomplete information environment. The purpose of this study is to propose the application of integrated MCDM techniques for correct project selection under incomplete information. The project selection process of six sigma involves four steps as follows: 1) determination of project selection criteria 2) calculation of relative importance of team member's competencies 3) assessment with project preference scale 4) finalization of ranking the projects. This study proposes the combination methods by applying group fuzzy Analytical Hierarchy Process (AHP), an easy defuzzified number of Trapezoidal Fuzzy Number (TrFN) and Grey Relational Analysis (GRA). Both of the weight of project selection criteria and the relative importance of team member's competencies can be evaluated by group fuzzy AHP. Project preferences are assessed by easy defuzzified scale of TrFN in case of incomplete information.)