This study was carried out to provide guidance to environmental policy makers when deciding which assessment fields (biotic, abiotic, qualitative, functional) should have priority for ecological preservation and to develop an objective and scientific methodology by introducing the engineering concept of the fuzzy integral. The grant of weights was used the eigenvalues calculated by factor analysis, and the converted values of indicators were obtained in multiplying the arithmetic values and eigenvalues. The results of the appropriateness and reliability of assessment fields were examined over 0.6, and the results showed that the design of questionnaire presented no great problems. When the fuzzy integral was calculated to determine the rankings at ${\lambda}$=1, 2, 3, 4, 5, respectively, they were 0.646, 0.630, 0.943, 1.423, and 1.167 for the biotic field, 1.298, 1.400, 0.901, 0.580, and 1.456 for the abiotic field, 0.714, 0.674, 0.346, 0.674, and 1.610 in the qualitative field and 1.000, 0.973, 0.943, 1.024, and 1.008 in the functional field. The sensitivity to ${\lambda}$ value showed that ${\lambda}=4$ was the most suitable. In comparison with ${\lambda}=0$ (the arithmetic mean), the range of change was narrow. Because the range for ${\lambda}=4$ was narrower than my other values, ${\lambda}=4$ was sure to be available in ranking-decision. The fuzzy integral is expected to be a method for analyzing and filtering human thoughts. In the future, in order to overcome linguistic uncertainty and subjectivity, other fuzzy integral models including Sugeno's method, AHP, and so forth should be used.