• Title/Summary/Keyword: 퍼지 패턴 분류기

Search Result 50, Processing Time 0.033 seconds

Type-2 Fuzzy Neural Networks for Pattern recognition (패턴인식을 위한 Type-2 Fuzzy Neural Networks)

  • Ji, Kwang-Hee;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1869_1870
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Type-2 Fuzzy Neural Networks(T2FNN)를 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. T2FNN은 Fuzzy C-Means(FCM)을 Type-2 Fuzzy C-Means로 확장시킨 것이라 할 수 있으며, Input layer, Fuzzyification layer, Inference layer, Deffuzification layer의 4층 네트워크로 구성된다. interval Type-1 퍼지 집합인 후반부의 연결가중치는 Gradient Descent Method를 이용하여 학습한다. 제안된 RBF 신경회로망은 모의데이터와 패턴인식 성능 평가에 많이 사용되는 machine learning 데이터에 적용하여 패턴 분류기로서의 성능을 평가받는다.

  • PDF

An Improved General Fuzzy Min-Max Neural Network for Pattern Classification (개선된 GFMM 신경망을 이용한 패턴 분류)

  • Lee, Joseph S.;Park, Jin-Hee;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.415-418
    • /
    • 2007
  • 본 논문에서는 일반화된 퍼지 최대-최소 신경망 모델에서 학습 패턴의 빈도요소를 고려하여 개선된 활성화 함수와 학습 방법을 제안한다. 특징공간상에서 하이퍼박스의 활성화를 위한 새로운 기준과 방법을 제시하며, 학습 패턴의 빈도요소가 학습효과에 미치는 영향을 분석한다. 또한 제안된 모델에서 개별 특징값과 하이퍼박스간의 상대적인 연관성을 고려하여 이득치를 계산함으로써, 기존 모델의 하이퍼박스 축소 기법을 대체한 학습효과에 관하여 고찰한다. 실험을 통하여 학습 패턴의 순서 변화와 왜곡된 정보에 안정된 분류기의 성능을 확인한다.

Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error (퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • In this paper, we proposed a new lazy classifier with fuzzy k-nearest neighbors approach and feature selection which is based on reconstruction error. Reconstruction error is the performance index for locally linear reconstruction. When a new query point is given, fuzzy k-nearest neighbors approach defines the local area where the local classifier is available and assigns the weighting values to the data patterns which are involved within the local area. After defining the local area and assigning the weighting value, the feature selection is carried out to reduce the dimension of the feature space. When some features are selected in terms of the reconstruction error, the local classifier which is a sort of polynomial is developed using weighted least square estimation. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods such as standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees.

Sign Language Recognition using a Modified Fuzzy Min-Max Neural Network Model (수정된 퍼지 최대-최소 신경망 모델을 이용한 수화 인식 기법)

  • Park, So-Jeong;Kim, Ho-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.257-260
    • /
    • 2011
  • 본 논문에서는 수화인식을 위한 신경망에서 특징추출과 분류단계의 방법론과, 특징 선별 기법을 통하여 분류기의 규모를 최적화 하는 방법을 고찰한다. 색상 및 움직임정보로부터 특징영역의 시간에 따른 변화를 3 차원 볼륨형태의 데이터로 표현하며, 이로부터 특징지도를 생성하는 과정에서 특징영역의 위치에 대한 변이를 보완하는 방법을 고려한다. 특징추출과정과 패턴 분류과정에서 점진적 학습이 가능한 모델과 특징 수를 효과적으로 줄일 수 있는 방법론을 제시하였으며, 학습된 신경망으로부터 특징과 패턴 클래스간의 상대적 연관성 척도를 정의하여 특징을 선별하도록 하였다. 제안된 내용에 대하여 여섯 가지 수화패턴에 대상으로 한 실험을 통하여 그 유용성을 평가하였다.

Design of Real-time Face Recognition Systems Based on Data-Preprocessing and Neuro-Fuzzy Networks for the Improvement of Recognition Rate (인식률 향상을 위한 데이터 전처리와 Neuro-Fuzzy 네트워크 기반의 실시간 얼굴 인식 시스템 설계)

  • Yoo, Sung-Hoon;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1952-1953
    • /
    • 2011
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis function Neural Network)을 설계하고 이를 n-클래스 패턴 분류 문제에 적용한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉층으로 전달하는 기능을 수행하고 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 패턴분류기의 최적화는 PSO(Particle Swarm Optimization)알고리즘을 통해 이루어진다. 그리고 제안된 패턴분류기는 실제 얼굴인식 시스템으로 응용하여 직접 CCD 카메라로부터 입력받은 데이터를 영상 보정, 얼굴 검출, 특징 추출 등과 같은 처리 과정을 포함하여 서로 다른 등록인물의 n-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석해본다.

  • PDF

Convex-Set-Based Classification (컨벡스 집합을 기반으로한 클래시피케이션)

  • Park, Sang-Gouk;Yeo, Hee-Joo;Kim, Jae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.636-639
    • /
    • 1999
  • 본 논문에서는 기존의 FMMCNN이나 Fuzzy ART에서 Hyperbox를 정형으로 이용한 방법보다 적응적으로 분류가 가능한 컨벡스 집합을 기반으로 한 새로운 클래시피케이션 기법을 제안하였다. 컨벡스 다면체를 적응적으로 생성하기 위하여 퍼지 뉴럴 네트웍 분류기를 구성하고, 이를 이용한 패턴 클래스들을 생성하였다. 마지막으로, FMMCNN과의 다양한 시뮬레이션을 수행하여 본 논문의 우수성을 입증하였다.

  • PDF

A Study on Documentization of Printed Hangul Image with Multi-size and Multi-style (다양한 크기 및 활자체를 갖는 인쇄체 한글 영상의 문서화에 관한 연구)

  • 김장욱;김경숙;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.295-298
    • /
    • 2001
  • 본 논문에서는 CCD카메라로 입력 받은 다중 크기 및 활자체로 구성된 한글문서의 화상 데이터를 편집기에서 수정 가능한 문자로 변환시키는 시스템을 구현하였다. 먼저 Dynamic 이 진화 처리 과정을 거친 화상을 흑백 화소의 누적분포에 따라 문자단위로 분할한 후, 다양한 크기로 분할된 문자를 표준패턴 크기로 표준화 시켰다. 한글을 자소 간 공백 위치의 특징에 따라서 6가지 유형으로 분류한 후, 퍼지 이론을 접목시킨 원형 패턴 벡터 알고리즘을 사용해서 표준벡터와 입력된 글자의 특징벡터를 비교하여 문자로 인식하게 하였다. 각 6가지 유형에서 서로 다른 자소로 결합된 문자들을 30개 선정하여 여러 가지 활자체 및 크기에 적용해 본 결과, 모두 문서화가 가능함을 알 수 있었다.

  • PDF

Pattern Classification using Fuzzy Suppot Vector machine (퍼지 써포트 벡터 머신을 이용한 패턴 분류)

  • Lee, Sun-Young;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2540-2542
    • /
    • 2004
  • 일반적으로 support vector machine (SVM)은 입력 데이터를 두개의 다른 클래스로 구별하는 결정면을 학습을 통하여 구한다. 특히 비분류 문제, 비선형 분류 문제들과 같은 두-클래스 문제를 해결하기 위해 데이터를 고차원의 특정 공간에서 다룬다. 많은 응용분야에서, 각 입력 데이터들은 이 두개의 클래스 중의 하나로 완전히 정의되지 않을 수도 있다. 이러한 문제를 해결하기 위해 우리는 본 논문에서 FSVM(fuzzy support vector machine)을 적용한다. 각 입력 데이터에 퍼지 멤버십(fuzzy membership)을 적용하여 결정면의 학습과정에 입력 데이터들이 다른 기여 (contribution)를 할 수 있게 한다. 본 논문에서는 기준 데이터 집합에 대해 제안된 방법을 실험하고, FSVM이 기존의 SVM보다 더 나음을 보인다.

  • PDF

Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm ((2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jin, Yong-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.195-201
    • /
    • 2014
  • In this study, face recognition system was designed based on polynomial Radial Basis Function Neural Networks(pRBFNNs) pattern classifier using 2-directional 2-dimensional principal component analysis algorithm. Existing one dimensional PCA leads to the reduction of dimension of image expressed by the multiplication of rows and columns. However $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis) is conducted to reduce dimension to each row and column of image. and then the proposed intelligent pattern classifier evaluates performance using reduced images. The proposed pRBFNNs consist of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with the aid of fuzzy c-means clustering. In the conclusion part of rules. the connection weight of RBFNNs is represented as the linear type of polynomial. The essential design parameters (including the number of inputs and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. Using Yale and AT&T dataset widely used in face recognition, the recognition rate is obtained and evaluated. Additionally IC&CI Lab dataset is experimented with for performance evaluation.

A Study on Pattern Recognition Using Polynomial-based Radial Basis Function Neural Networks (다항식기반 RBF 신경회로망을 이용한 패턴인식에 대한 연구)

  • Ji, Kwang-Hee;Kim, Woong-Ki;Oh, Sung-Kwun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.387-389
    • /
    • 2009
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경 회로망을 설계하고 이를 패턴분류 문제에 적용하여 그 성능을 분석한다. 제안된 RBF 신경회로망은 입력층, 은닉층, 출력층으로 이루어진다. 입력층의 연결가중치는 1로서 입력층의 입력벡터는 그대로 은닉층으로 전달되고 은닉층은 FCM(Fuzzy C-means Clustering)방법을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습되어진다. 네트워크의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의한 퍼지추론의 결과로 얻어진다. 제안된 RBF 신경회로망은 여러 종류의 machine learning 데이터에 적용하여 패턴분류기로서의 성능을 평가받는다.

  • PDF