• Title/Summary/Keyword: 퍼지 클러스터 분석

Search Result 41, Processing Time 0.031 seconds

A Re-Ranking Retrieval Model based on Two-Level Similarity Relation Matrices (2단계 유사관계 행렬을 기반으로 한 순위 재조정 검색 모델)

  • 이기영;은희주;김용성
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1519-1533
    • /
    • 2004
  • When Web-based special retrieval systems for scientific field extremely restrict the expression of user's information request, the process of the information content analysis and that of the information acquisition become inconsistent. In this paper, we apply the fuzzy retrieval model to solve the high time complexity of the retrieval system by constructing a reduced term set for the term's relatively importance degree. Furthermore, we perform a cluster retrieval to reflect the user's Query exactly through the similarity relation matrix satisfying the characteristics of the fuzzy compatibility relation. We have proven the performance of a proposed re-ranking model based on the similarity union of the fuzzy retrieval model and the document cluster retrieval model.

Adaptive Data Mining Model using Fuzzy Performance Measures (퍼지 성능 측정자를 이용한 적응 데이터 마이닝 모델)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.541-546
    • /
    • 2006
  • Data Mining is the process of finding hidden patterns inside a large data set. Cluster analysis has been used as a popular technique for data mining. It is a fundamental process of data analysis and it has been Playing an important role in solving many problems in pattern recognition and image processing. If fuzzy cluster analysis is to make a significant contribution to engineering applications, much more attention must be paid to fundamental decision on the number of clusters in data. It is related to cluster validity problem which is how well it has identified the structure that Is present in the data. In this paper, we design an adaptive data mining model using fuzzy performance measures. It discovers clusters through an unsupervised neural network model based on a fuzzy objective function and evaluates clustering results by a fuzzy performance measure. We also present the experimental results on newsgroup data. They show that the proposed model can be used as a document classifier.

An Optimal Cluster Analysis Method with Fuzzy Performance Measures (퍼지 성능 측정자를 결합한 최적 클러스터 분석방법)

  • 이현숙;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.81-88
    • /
    • 1996
  • Cluster analysis is based on partitioning a collection of data points into a number of clusters, where the data points in side a cluster have a certain degree of similarity and it is a fundamental process of data analysis. So, it has been playing an important role in solving many problems in pattern recognition and image processing. For these many clustering algorithms depending on distance criteria have been developed and fuzzy set theory has been introduced to reflect the description of real data, where boundaries might be fuzzy. If fuzzy cluster analysis is tomake a significant contribution to engineering applications, much more attention must be paid to fundamental questions of cluster validity problem which is how well it has identified the structure that is present in the data. Several validity functionals such as partition coefficient, claasification entropy and proportion exponent, have been used for measuring validity mathematically. But the issue of cluster validity involves complex aspects, it is difficult to measure it with one measuring function as the conventional study. In this paper, we propose four performance indices and the way to measure the quality of clustering formed by given learning strategy.

  • PDF

FCM Quantization based Fuzzy Stretching (FCM 양자화 기반 퍼지 스트레칭)

  • Lim, En-young;Kim, Nam-young;Kwon, Hee-young;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.59-62
    • /
    • 2021
  • 본 논문에서는 사다리꼴 형태의 소속 함수를 적용하여 스트레칭 하는 과정에서 상한과 하한을 FCM 기반 양자화 기법을 적용하여 동적으로 조정하는 퍼지 스트레칭 기법을 제안한다. 제안된 퍼지 스트레칭 기법은 FCM 기반 양자화 기법을 적용하여 각 클러스터를 생성하고 생성된 각 클러스터의 중심에 해당되는 명암도를 이용하여 사다리꼴 형태의 소속 함수의 구간을 설정한다. 그리고 설정한 구간 정보를 이용하여 스트레칭을 위한 상한과 하한을 구하여 영상을 스트레칭 한다. 제안된 FCM 양자화 기반 퍼지 스트레칭 기법의 성능을 분석하기 위해서 명암도 분포가 좁고 명암 대비가 낮은 결절종 초음파 영상과 컨테이너 영상을 대상으로 실험하였다. 실험 결과에서도 알 수 있듯이 기존의 히스토그램 스트레칭 기법과 삼각형 형태의 소속 함수를 적용한 퍼지 스트레칭 기법보다 명암 대비가 향상되었다. 결절종 초음파 영상에서는 결절종 영역과 그 외의 영역 간의 명암 대비가 뚜렷하게 나타나서 결절종 추출에 효과적인 것을 확인하였고 컨테이너 영상에서는 컨테이너 데미지를 추출하는데 필요한 컨테이너 굴곡선 등과 같은 특징이 다른 기법들에 비해 선명하게 나타났다.

  • PDF

A Feature Selection Method Based on Fuzzy Cluster Analysis (퍼지 클러스터 분석 기반 특징 선택 방법)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.135-140
    • /
    • 2007
  • Feature selection is a preprocessing technique commonly used on high dimensional data. Feature selection studies how to select a subset or list of attributes that are used to construct models describing data. Feature selection methods attempt to explore data's intrinsic properties by employing statistics or information theory. The recent developments have involved approaches like correlation method, dimensionality reduction and mutual information technique. This feature selection have become the focus of much research in areas of applications with massive and complex data sets. In this paper, we provide a feature selection method considering data characteristics and generalization capability. It provides a computational approach for feature selection based on fuzzy cluster analysis of its attribute values and its performance measures. And we apply it to the system for classifying computer virus and compared with heuristic method using the contrast concept. Experimental result shows the proposed approach can give a feature ranking, select the features, and improve the system performance.

Similarity-based Dynamic Clustering Using Radar Reflectivity Data (퍼지모델을 이용한 유사성 기반의 동적 클러스터링)

  • Lee, Han-Soo;Kim, Su-Dae;Kim, Yong-Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.219-222
    • /
    • 2011
  • There are number of methods that track the movement of an object or the change of state, such as Kalman filter, particle filter, dynamic clustering, and so on. Amongst these method, dynamic clustering method is an useful way to track cluster across multiple data frames and analyze their trend. In this paper we suggest the similarity-based dynamic clustering method, and verifies it's performance by simulation. Proposed dynamic clustering method is how to determine the same clusters for each continuative frame. The same clusters have similar characteristics across adjacent frames. The change pattern of cluster's characteristics in each time frame is throughly studied. Clusters in each time frames are matched against each others to see their similarity. Mamdani fuzzy model is used to determine similarity based matching algorithm. The proposed algorithm is applied to radar reflectivity data over time domain. We were able to observe time dependent characteristic of the clusters.

  • PDF

Design and evaluation of a cluster-based fuzzy cooperative caching method for MANETs (이동 애드-혹 망을 위한 클러스터 기반 퍼지 협력 캐싱 방법의 설계 및 평가)

  • Lee, Eun-Ju;Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.269-285
    • /
    • 2011
  • Caching of frequently accessed data in mobile ad-hoc networks is a technique that can improve data access performance and availability. Cooperative caching, which allows sharing and coordination of cached data among several clients, can further enhance the potential of caching techniques. In this paper, we propose a cluster-based fuzzy cooperative caching method for mobile ad-hoc networks. The performance of the proposed caching method is evaluated through an analytical model and is compared to that of other cooperative caching methods.

Approximate Fuzzy Clustering Based on Density Functions (밀도함수를 이용한 근사적 퍼지 클러스처링)

  • 권석호;손세호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.285-292
    • /
    • 2000
  • In general, exploratory data analysis consists of three processes: i) assessment of clustering tendency, ii) cluster analysis, and iii) cluster validation. This analysis method requiring a number of iterations of step ii) and iii) to converge is computationally inefficient. In this paper, we propose a density function-based approximate fuzzy clustering method with a hierachical structure which consosts of two phases: Phase I is a features(i.e., number of clusters and cluster centers) extraction process based on the tendency assessment of a given data and Phase II is a standard FCM with the cluster centers intialized by the results of the Phase I. Numerical examples are presented to show the validity of the proposed clustering method.

  • PDF

ART2 Based Fuzzy Binarization Method with Low Information Loss (정보손실이 적은 ART2 기반 퍼지 이진화 방법)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1269-1274
    • /
    • 2014
  • In computer vision research, binarization procedure is one of the most frequently used tools to discriminate target objects from background in grey level binary image. Fuzzy binarization is a reliable technique in environment with high uncertainty such as medical image analysis by setting the threshold as the average of minimum and maximum brightness with triangle type fuzzy membership function. However, this technique is also known as contrast sensitive method thus its discrimination power is not so great when the image has low contrast difference between objects and backgrounds and suffer from information loss as a result. Thus, in this paper, we propose a fuzzy binarization using ART2 algorithm to handle such low contrast image analysis. Proposed ART2 algorithm is applied to determine the medium point of membership function in the fuzzy binarization paradigm. The proposed methods shows low information loss rate in our experiment.

Design of Multiple Model Fuzzy Prediction Systems Based on HCKA (HCKA 기반 다중 모델 퍼지 예측 시스템의 구현)

  • Bang, Young-Keun;Shim, Jae-Son;Park, Ha-Yong;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1642_1643
    • /
    • 2009
  • 일반적으로, 퍼지 예측 시스템의 성능은 데이터의 특성과 퍼지 집합을 생성하기 위한 클러스터일 기법에 매우 의존적이다. 하지만, 예측을 위한 시계열 데이터들은 자연현상에 기인하는 강한 비선형적 특성을 가지고 있으므로 적합한 시스템을 구현하는 것에 많은 제약이 따른다. 따라서 본 논문에서는 시계열의 비선형적 특성을 적절히 취급하기 위하여, 그들로부터 생성 가능한 차분 데이터 중, 유효한 차분데이터를 이용하여 다중 모델 퍼지 예측 시스템을 구현함으로써, 보다 우수한 예측이 가능하도록 하였으며, 퍼지 시스템의 모델링에는 교차 상관분석기법에 따른 계층적 구조의 클러스터링 기법 (Hierarchical Cross-correlation and K-means Clustering Algorithms: HCKA)을 적용하여, 시스템을 위한 규칙기반의 적합성을 높일 수 있도록 하였다.

  • PDF